Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Predicting unpredictability: Information theory offers new way to read ice cores

07.12.2016

At two miles long and five inches in diameter, the West Antarctic Ice Sheet Divide (WAIS) ice core is a tangible record of the last 68,000 years of our planet's climate.

Completed in 2011, the core is packed with information, but it's also packed with noise and error, making the climate story hard to read. Figuring out whether blips in the data are evidence of humans spewing carbon into the atmosphere, odd North Atlantic weather events, or equipment malfunctions often challenges the scientists trying to read the ice cylinder's story.


This is a section of the West Antarctic Ice Sheet ice core sample with a dark ash layer.

Image courtesy Heidi Roop

Drawing from information theory, a research team led by Santa Fe Institute Omidyar Fellow Joshua Garland has proposed new, more sophisticated techniques that promise to make ongoing interpretation of the WAIS core easier and extract new kinds of data that could change the way we think about Earth's climate.

"There is information in these records that we didn't know existed until now, and it has opened doors where we didn't even know there was a door before," says James W.C. White, director of the Institute of Arctic and Alpine Research and a collaborator on the project.

In the first application of the new technique, Garland, White, and team focus on stable water isotopes present in the ice, the mix of which is a good proxy for nearby sea-surface temperatures at the time ice formed and, therefore, a good way to track climate change over thousands of years. Just plot the isotope mix over time, and you can see how temperatures changed.

What's harder to see, however, is whether those changes result from natural processes or external influences--say, Industrial Revolution activities. That's where information theory and something called permutation entropy come in.

In information theory, entropy is a measure of the unpredictability of information content. Permutation entropy essentially is a way to quantify the predictability of a future event.

Imagine an isolated climate system, void of game changers like supervolcanos or humans. Everything you'd need to predict the future climate would be contained in the Earth's climate history. When game changers arrive, they inject new information that couldn't have been predicted from the climate's past patterns--and that should manifest as an increase in permutation entropy (i.e., more unpredictability).

In fact, there are early signs in the WAIS record of an entropy increase roughly 10,000 years ago, at the beginning of the Holocene, suggesting human impacts on our climate began well before the Industrial Revolution.

Confirmation of that finding is pending. Meanwhile, Garland and team have already made two other surprising discoveries using their technique. The first concerns Dansgaard-Oeschger events, during which Greenland rapidly warms during glacial periods, triggering ripple effects throughout the world.

Geoscientists hypothesize that these events begin with some kind of external shock. But when Garland and team looked at another core, the North Greenland Ice Core, there didn't appear to be an increase in permutation entropy--in other words, no external shock, suggesting the events are likely part of the climate's standard operating procedure. This initial result calls for more study.

In another surprise, Garland and team discovered an anomaly in the WAIS ice-core data that had eluded others--an anomaly they eventually traced to the use of an older instrument to analyze one section of the ice core. Using the permutation entropy technique, WAIS researchers are now looking for similar anomalies deeper in the ice core.

Their paper, "A First Step Toward Quantifying the Climate's Information Production Over the Last 68,000 Years," appeared last week in Advances in Intelligent Data Analysis XV, the proceedings of the 15th International Symposium on Intelligent Data Analysis, Stockholm, Sweden, October 13-15, 2016.

Media Contact

John German
jdg@santafe.edu
505-946-2798

@sfi_news

http://www.santafe.edu

John German | EurekAlert!

Further reports about: Alpine Research Analysis glacial periods ice cores permutation temperatures

More articles from Earth Sciences:

nachricht Tiny microenvironments in the ocean hold clues to global nitrogen cycle
23.04.2018 | University of Rochester

nachricht Clear as mud: Desiccation cracks help reveal the shape of water on Mars
20.04.2018 | Geological Society of America

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>