Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Poison in the Arctic and the human cost of 'clean' energy


Hydroelectric energy may be more damaging to northern ecosystems than climate change

Methylmercury, a potent neurotoxin, is especially high in Arctic marine life but until recently, scientists haven't been able to explain why. Now, research from the Harvard John A. Paulson School of Engineering and Applied Science (SEAS) and Harvard T.H. Chan School of Public Health suggests that high levels of methylmercury in Arctic life are a byproduct of global warming and the melting of sea-ice in Arctic and sub-Arctic regions.

Rigolet is on the shore of Lake Melville.

Credit: Prentiss Balcom

To mitigate global warming, many governments are turning to hydroelectric power but the research also suggests that flooding for hydroelectric development will put even more methylmercury into ecosystems than climate change.

The research, published in PNAS, began as a review of the environmental impact assessment for the Muskrat Falls hydroelectric dam in Labrador, Canada, which, in 2017, will flood a large region upstream from an estuarine fjord called Lake Melville. The majority of the lake lies in Nunatsiavut, the first autonomous region in Canada governed by Inuit. The predominantly indigenous communities along Lake Melville rely on the lake as a primary source of food.

When an impact report predicted no adverse downstream effects into Lake Melville from the flooding, the Nunatsiavut Government reached out to Elsie Sunderland, associate professor of environmental engineering at SEAS and environmental health at the Harvard Chan School, for help.

"Clean energy benefits the entire world but the costs of hydroelectric power are often assumed entirely by the Aboriginal communities who live next to these developments," said Sunderland. "Our research highlights some of the costs to the community with the goal of helping them plan and adapt to the changes that are about to occur."

Sunderland and her team -- including lab manager Prentiss Balcom and postdoctoral fellow Amina Schartup, the paper's first author -- made their first trip to Lake Melville in 2012. They collected baseline methylmercury levels on a fishing boat called "What's Happening" -- which was exactly the question Sunderland and her team asked when the results came in.

"We found more methylmercury in the water than our modeling could explain," said Schartup. "All of the methylmercury from the rivers feeding into Lake Melville and from the sediment at the bottom of the lake couldn't account for the levels in the water. There was something else going on here."

The team noted that the concentration of methylmercury in biota -- the plankton --peaked between 1 and 10 meters below the surface.

These findings closely matched findings from the central Arctic Ocean. The question was, why was there such a high concentration of methylmercury in biota in both systems?

The answer lay in the eating habits of plankton.

When fresh and salt water meet-- in estuaries or when sea-ice melts in the ocean-- salinity increases as water deepens. This stratification allows fluffy organic matter that typically sinks to the bottom to reach a neutral buoyancy -- meaning it can't float up or down in the water column. This layer, called marine snow, collects other small settling debris and concentrates it into a feeding zone for marine plankton. The bacteria stuck in this zone are performing a complex chemical process that turns naturally occurring mercury into deadly and readily accumulated methylmercury.

Attracted to this layer of marine snow, the zooplankton go on a feeding frenzy that can last several weeks. In this time, methylmercury produced by the bacteria accumulates in biota and magnifies as it works its way up the food chain.

"This system is incredibly efficient at accumulating methylmercury," said Schartup.

This same system can be extrapolated to the Arctic, where freshwater from melting ice is mixing with salt water, Schartup said.

If this system is already a pro at magnifying methylmercury, what happens when methylmercury levels increase due to reservoir flooding upstream?

Sunderland and her team collected soil cores from the inland areas that are slated to be flooded for hydroelectric power in 2017. The team simulated flooding by covering the cores with river water. Within five days, methylmercury levels in the water covering the cores increased 14 fold. Estimated increases in methylmercury inputs from the Churchill River resulting from this pulse of methylmercury range from 25 to 200 percent.

That's the low estimate.

"We removed the litter layer and surface vegetation prior to saturating the cores, which is known to decrease methylmercury levels, " Sunderland said. "Without clearing that, the actual pulse of methlymercury to the Lake Melville ecosystem may be much greater."

For communities who rely on the ecosystem for food, like those along Lake Melville, the downstream effects of flooding for hydroelectric development could be devastating.

"Scientists have a responsibility to understand and explain how environmental systems will react before they are modified," Schartup said. "Because once the damage is done, you can't take it back."

Leah Burrows | EurekAlert!

More articles from Earth Sciences:

nachricht Wandering greenhouse gas
16.03.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Unique Insights into the Antarctic Ice Shelf System
14.03.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>