Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plate tectonics without jerking

30.06.2016

AWI researchers are for the first time making detailed recordings of earthquakes on ultraslow mid-ocean ridges

The earthquake distribution on ultraslow mid-ocean ridges differs fundamentally from other spreading zones. Water circulating at a depth of up to 15 kilometres leads to the formation of rock that resembles soft soap.


OBS deployment

Photo: F. Mehrtens / Alfred-Wegener-Institut

This is how the continental plates on ultraslow mid-ocean ridges may move without jerking, while the same process in other regions leads to many minor earthquakes, according to geophysicists of the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI). Their study is going to be published advanced online in the journal Nature on Wednesday, June 29, 2016.

Mountain ranges like the Himalayas rise up where continental plates collide. Mid-ocean ridges, where the continents drift apart, are just as spectacular mountain ranges, but they are hidden in the depths of the oceans. On the seabed, like on a conveyor belt, new ocean floor (oceanic lithosphere) is formed as magma rises from greater depths to the top, thus filling the resulting gap between the lithospheric plates.

This spreading process creates jerks, and small earthquakes continuously occur along the conveyor belt. The earthquakes reveal a great deal about the origin and structure of the new oceanic lithosphere. On the so-called ultraslow ridges, the lithospheric plates drift apart so slowly that the conveyor belt jerks and stutters and, because of the low temperature, there is insufficient melt to fill the gap between the plates. This way, the earth's mantle is conveyed to the seabed in many places without earth crust developing. In other locations along this ridge, on the other hand, you find giant volcanoes.

Ultraslow ridges can be found under the sea ice in the Arctic and south of Africa along the Southwest Indian Ridge in the notorious sea areas of the Roaring Forties and Furious Fifties. Because these areas are so difficult to access, earthquakes have not been measured there. And so until now, little was known about the structure and development of around 20 percent of the global seabed.

With the research vessel Polarstern, a reliable workhorse even in heavy seas, the researchers around Dr Vera Schlindwein of the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) have now for the first time risked deploying a network of ocean bottom seismometers (OBS) at the Southwest Indian Ridge in the Furious Fifties and recovered them a year later.

At the same time, a second network was placed on a volcano in the more temperate latitudes of the Southwest Indian Ridge. "Our effort and our risk were rewarded with a unique set of earthquake data, which for the first time provides deep insights into the formation of the ocean floor when spreading rates are very slow," explains AWI geophysicist Vera Schlindwein.

Her results turn current scientific findings on the functioning of ultra-slow mid-ocean ridges upside down: Schlindwein and her PhD student Florian Schmid found that water may circulate up to 15 kilometres deep in the young oceanic lithosphere, i.e. the earth crust and the outer part of the earth mantle. If this water comes into contact with rock from the earth mantle, a greenish rock called serpentinite forms.

Even small quantities of ten percent serpentinite are enough for the rock to move without any earthquakes as if on a soapy track. The researchers discovered such aseismic areas, clearly confined by many small earthquakes, in their data.

Until now, scientists thought that serpentinite only forms near fault zones and near the surface. "Our data now suggest that water circulates through extensive areas of the young oceanic lithosphere and is bound in the rock. This releases heat and methane, for example, to a degree not previously foreseen," says Vera Schlindwein.

The AWI geophysicists were now able to directly observe the active spreading processes using the ocean floor seismometers, comparing volcanic and non-volcanic ridge sections. "Based on the distribution of earthquakes, we are for the first time able to watch, so to speak, as new lithosphere forms with very slow spreading rates. We have not had such a data set from ultra-slow ridges before," says Vera Schlindwein.

"Initially, we were very surprised that areas without earth crust show no earthquakes at all down to 15 kilometres depth, even though OBS were positioned directly above. At greater depths and in the adjacent volcanic areas, on the other hand, where you can find basalt on the sea floor and a thin earth crust is present, there were flurries of quakes in all depth ranges," says Vera Schlindwein about her first glance at the data after retrieving the OBS with RV Polarstern in 2014.

The results also have an influence on other marine research disciplines: geologists think about other deformation mechanisms of the young oceanic lithosphere. Because rock that behaves like soft soap permits a completely different deformation, which could be the basis of the so-called "smooth seafloor" that is only known from ultra-slow ridges. Oceanographers are interested in heat influx and trace gases in the water column in such areas, which were previously thought to be non-volcanic and "cold". Biologists are interested in the increased outflow of methane and sulphide on the sea floor that is to be expected in many areas and that represents an important basis of life for deep-sea organisms.

Original publication:
Vera Schlindwein, Florian Schmid: Mid-ocean ridge seismicity reveals extreme types of ocean lithosphere. DOI: 10.1038/nature18277

EMBARGOED until: Wednesday, 29 June 2016, 1900 CEST, 1800 London Time, 1300 US Eastern Time

Notes for Editors:
Printable images are available in our online Media Centre until the embargo is lifted: http://multimedia.awi.de/medien/pincollection.jspx?collectionName=%7B3906d4a3-b1...

A video on the OBS deployment is available on our YouTube channel: http://www.youtube.com/watch?v=1jb_DBCEyVM&feature=youtu.be

Your contact persons are Dr Vera Schlindwein (tel.: +49 (0)471 4831-1943; e-mail: Vera.Schlindwein(at)awi.de) as well as Dr Folke Mehrtens, Dept. of Communications and Media Relations (tel.: +49 (0)471 4831-2007; e-mail: Folke.Mehrtens(at)awi.de).

The Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) conducts research in the Arctic, Antarctic and oceans of the high and mid-latitudes. It coordinates polar research in Germany and provides major infrastructure to the international scientific community, such as the research icebreaker Polarstern and stations in the Arctic and Antarctica. The Alfred Wegener Institute is one of the 18 research centres of the Helmholtz Association, the largest scientific organisation in Germany.

Ralf Röchert | idw - Informationsdienst Wissenschaft

More articles from Earth Sciences:

nachricht Filling the gap: High-latitude volcanic eruptions also have global impact
20.11.2017 | Institute of Atmospheric Physics, Chinese Academy of Sciences

nachricht Antarctic landscape insights keep ice loss forecasts on the radar
20.11.2017 | University of Edinburgh

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>