Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Planet Earth deep frozen

14.04.2015

New Study confirms periods with extremely cold climate – Glaciers covered even equatorial regions

It is probable that for several times planet earth was completely covered by ice, geologists say. From a distance, it would have looked like a huge snowball.

A new study from the University of Göttingen now confirms that the Earth went through episodes of extremely cold climates millions and billions years ago.

In so-called “Snowball Earth” periods, glaciers even covered equatorial regions. Geologist Dr. Daniel Herwartz has reconstructed the oxygen isotopic compositions of ancient (sub) tropical glaciers.

“The oxygen isotope composition of the glaciers can provide information about the climate conditions on an earth totally covered by ice”, says Dr. Herwartz, who is the lead author of the study in Göttingen and who now works at the University of Cologne.

The results are published in Proceedings of the National Academy of Sciences of the USA (PNAS) on April 13, 2015.

The studied rocks, 2.4 billion and 700 million years old, were samples from north-western Russia and China. At the time, both regions were located close to the equator. There, the rocks interacted with melt water from (sub) tropical glaciers and stored the provided isotopic information for hundreds of millions years.

The reconstructed oxygen isotope composition for the glaciers of the 2.4 billion year event is similar to one that is nowadays only observed in the coldest place of our planet: in central Antarctica with mean annual temperatures of minus 40 degree Celsius. “To imagine places like Egypt or Florida with mean annual tem-peratures of minus 40 degree Celsius is just mind-boggling, but that is what the data suggests” says Dr. Herwartz.

The 700 million year old rocks from China conform to climates similar to southern Greenland today and suggest a much warmer climate than the 2.4 billion year old rocks from north-western Russia. The scientists were able to reconstruct the glacial water isotopic compositions by analysing the 17O isotope with a highly precise method.

The “Snowball Earth” hypothesis poses that the entire earth was frozen with all oceans covered under sev-eral hundred meter thick sea-ice. At low CO2 levels ice caps extend to lower latitudes and once, a critical part of the Earth’s surface is covered by ice, reflection of sunlight leads to a further decrease in temperature and ends in an entirely frozen planet.

Only the raise of atmospheric CO2 through continuing volcanic activity could enforce a competing greenhouse effect and released the Earth from it’s frozen state. “’Snowball Earth’ events are critical intervals in the evolution of life. While an entirely frozen planet restricts live to small enclaves like hot springs, the times after such events often show an unseen explosion of live.” says co-author Prof. Dr. Andreas Pack from the University of Göttingen.

Original publication:
Herwartz D., Pack A., Xiao Y., Muhlenbachs K., Sengupta S. and Di Rocco T.(2015): Revealing the climate of snowball Earth from Δ17O systematics of hydrothermal rocks. Proceedings of the National Academy of Sciences of the USA. Doi: 10.1073/pnas.1422887112

Contact:
Dr. Daniel Herwartz
Universität zu Köln
Institut für Geologie und Mineralogie, Abteilung Umweltisotopengeologie
Phone: +49 221 4703240
Mail: d.herwartz@uni-koeln.de

Romas Bielke | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-koeln.de/

More articles from Earth Sciences:

nachricht NASA examines Peru's deadly rainfall
24.03.2017 | NASA/Goddard Space Flight Center

nachricht Steep rise of the Bernese Alps
24.03.2017 | Universität Bern

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>