Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Permafrost soil is possible source of abrupt rise in greenhouse gases at end of last ice age


Scientists from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) have identified a possible source of carbon dioxide (CO2) and other greenhouse gases that were abruptly released to the atmosphere in large quantities around 14,600 years ago.

According to this new interpretation, the CO2 – released during the onset of the Bølling/Allerød warm period – presumably had their origin in thawing Arctic permafrost soil and amplified the initial warming through positive feedback. The study now appears online in the journal Nature Communications.

35 meters high Pleistocene Ice Complex cliff at Sobo Sise Island (Lena Delta), Siberian Arctic. Photo: Alfred-Wegener-Institut / Thomas Opel

One of the most abrupt rises in the carbon dioxide concentration in the atmosphere at the end of the last ice age took place about 14,600 years ago. Ice core data show that the CO2 concentration at that time increased by more than 10 ppm (parts per million, unit of measure for the composition of gases) within 200 years.

This CO2 increase, i.e. approx. 0.05 ppm per year, was significantly less than the current rise in atmospheric CO2 of 2-3 ppm in the last decade caused by fossil fuels. These data describe an abrupt change in the global carbon cycle during the transition from the last ice age to the present-day warm interglacial and allow conclusions to be drawn about similar processes that could play a role in the future.

To determine the origin of the greenhouse gas, a team around by the geoscientists and climate researchers Dr. Peter Köhler and Dr. Gregor Knorr from the Alfred Wegener Institute has carried out computer simulations focusing on the new interpretation of these CO2 data. These calculations were motivated by new radiocarbon data (14C) that provide information on the age of the CO2 released to the atmosphere. The age of the carbon then allows conclusions to be drawn about the carbon source.

“The virtual lack of radiocarbon in the CO2 that was released into the atmosphere shows us that the carbon must have been very old,” says Köhler. The carbon therefore cannot be originated from the deep ocean, Köhler adds: “The carbon stored in the deep ocean has been subject to exchange with the atmosphere over a period of millennia. In the atmosphere 14C has its only source. It is produced through the impact of galactic cosmic rays on molecules in the atmosphere.” However, radiocarbon is unstable and decays with a half-life of around 5,700 years. The atmospheric data of CO2 and 14C can only be explained if a carbon source is assumed that contains virtually no 14C any more – thus the greenhouse gases must have had another source than the deep ocean.

Permafrost soil contains, to some extent, very old organic material, which is released in the form of the greenhouse gases CO2 and methane when the soil thaws. Permafrost soil thus might be a possible source of old carbon. The thawing of Arctic permafrost soil might have been caused by a sudden resumption of large-scale Atlantic heat transport in the ocean that initiated the Bølling/Allerød warm period in the high northern hemisphere.

The scientists were able to estimate the amount of the carbon dioxide released to the atmosphere by applying a computer model that simulates the global carbon cycle. The simulation results indicate that the input of more than half a gigaton of carbon per year over a period of two centuries is necessary to explain the observed data. This corresponds to a total amount of more than 100 gigatons of carbon. Present-day anthropogenic CO2 emissions due to fossil fuels, at approx. ten gigatons of carbon a year, are greater than the release rates of this natural process by a factor of at least ten.

According to the study, the proposed thawing of large areas of permafrost, followed by the rise in greenhouse gases, occurred at the same time as the warming in the northern hemisphere at the beginning of the Bølling warm period. The released greenhouse gases may amplify the initial warming through feedback effects.

A similar effect is also predicted for the future in the current IPCC report. Warming in Siberia, for instance, is already leading to thawing of permafrost soil: outgassing of CO2 and methane takes place. The same processes observed today – and are expected to an even greater extent in the coming decades – presumably occurred in a similar manner 14,600 years ago. “However, the state of the climate on Earth today has already been changed by anthropogenically emitted greenhouse gases. Future CO2 release due to the proposed thawing of permafrost will be substantially less than the input due to fossil fuels. However, these emissions from permafrost soil are additional greenhouse gas sources that further amplify the anthropogenically induced effect,” says Köhler.

The abrupt CO2 rise about 14,600 years ago examined by the scientists was one of three rapid fluctuations in the carbon cycle during the transition from the last ice age to the present interglacial. This was shown by American colleagues (Marcott et al.; doi:10.1038/nature13799) by means of new CO2 data from an ice core in West Antarctica that was published in the journal Nature at the end of October 2014. Since CO2 analyses on ice cores always contain only an averaged version of the atmospheric signal due to the inclusion process of the gases in the ice, the exact size of the CO2 pulse is still uncertain. Nevertheless, scientists can clearly determine that the rates of change in atmospheric CO2 during these abrupt CO2 rises were significantly lower than the corresponding rates caused by fossil fuels of approx. 2-3 ppm per year, which are occurring today.

Original Study
Peter Köhler, Gregor Knorr und Edouard Bard (2014): Permafrost thawing as a possible source of abrupt carbon release at the onset of the Bølling/Allerød. Nature Communications 5:5520; DOI: 10.1038/ncomms6520;

Follow the Alfred Wegener Institute on Twitter and Facebook. In this way you will receive all current news as well as information on brief everyday stories about life at the institute.

The Alfred Wegener Institute conducts research in the Arctic, Antarctic and in the high and mid-latitude oceans. The Institute coordinates German polar research and provides important infrastructure such as the research icebreaker Polarstern and research stations in the Arctic and Antarctic to the national and international scientific world. The Alfred Wegener Institute is one of the 18 research centres of the Helmholtz Association, the largest scientific organisation in Germany.

Ralf Röchert | idw - Informationsdienst Wissenschaft

More articles from Earth Sciences:

nachricht Oasis of life in the ice-covered central Arctic
24.10.2016 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>