Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Permafrost soil is possible source of abrupt rise in greenhouse gases at end of last ice age

20.11.2014

Scientists from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) have identified a possible source of carbon dioxide (CO2) and other greenhouse gases that were abruptly released to the atmosphere in large quantities around 14,600 years ago.

According to this new interpretation, the CO2 – released during the onset of the Bølling/Allerød warm period – presumably had their origin in thawing Arctic permafrost soil and amplified the initial warming through positive feedback. The study now appears online in the journal Nature Communications.


35 meters high Pleistocene Ice Complex cliff at Sobo Sise Island (Lena Delta), Siberian Arctic. Photo: Alfred-Wegener-Institut / Thomas Opel

One of the most abrupt rises in the carbon dioxide concentration in the atmosphere at the end of the last ice age took place about 14,600 years ago. Ice core data show that the CO2 concentration at that time increased by more than 10 ppm (parts per million, unit of measure for the composition of gases) within 200 years.

This CO2 increase, i.e. approx. 0.05 ppm per year, was significantly less than the current rise in atmospheric CO2 of 2-3 ppm in the last decade caused by fossil fuels. These data describe an abrupt change in the global carbon cycle during the transition from the last ice age to the present-day warm interglacial and allow conclusions to be drawn about similar processes that could play a role in the future.

To determine the origin of the greenhouse gas, a team around by the geoscientists and climate researchers Dr. Peter Köhler and Dr. Gregor Knorr from the Alfred Wegener Institute has carried out computer simulations focusing on the new interpretation of these CO2 data. These calculations were motivated by new radiocarbon data (14C) that provide information on the age of the CO2 released to the atmosphere. The age of the carbon then allows conclusions to be drawn about the carbon source.

“The virtual lack of radiocarbon in the CO2 that was released into the atmosphere shows us that the carbon must have been very old,” says Köhler. The carbon therefore cannot be originated from the deep ocean, Köhler adds: “The carbon stored in the deep ocean has been subject to exchange with the atmosphere over a period of millennia. In the atmosphere 14C has its only source. It is produced through the impact of galactic cosmic rays on molecules in the atmosphere.” However, radiocarbon is unstable and decays with a half-life of around 5,700 years. The atmospheric data of CO2 and 14C can only be explained if a carbon source is assumed that contains virtually no 14C any more – thus the greenhouse gases must have had another source than the deep ocean.

Permafrost soil contains, to some extent, very old organic material, which is released in the form of the greenhouse gases CO2 and methane when the soil thaws. Permafrost soil thus might be a possible source of old carbon. The thawing of Arctic permafrost soil might have been caused by a sudden resumption of large-scale Atlantic heat transport in the ocean that initiated the Bølling/Allerød warm period in the high northern hemisphere.

The scientists were able to estimate the amount of the carbon dioxide released to the atmosphere by applying a computer model that simulates the global carbon cycle. The simulation results indicate that the input of more than half a gigaton of carbon per year over a period of two centuries is necessary to explain the observed data. This corresponds to a total amount of more than 100 gigatons of carbon. Present-day anthropogenic CO2 emissions due to fossil fuels, at approx. ten gigatons of carbon a year, are greater than the release rates of this natural process by a factor of at least ten.

According to the study, the proposed thawing of large areas of permafrost, followed by the rise in greenhouse gases, occurred at the same time as the warming in the northern hemisphere at the beginning of the Bølling warm period. The released greenhouse gases may amplify the initial warming through feedback effects.

A similar effect is also predicted for the future in the current IPCC report. Warming in Siberia, for instance, is already leading to thawing of permafrost soil: outgassing of CO2 and methane takes place. The same processes observed today – and are expected to an even greater extent in the coming decades – presumably occurred in a similar manner 14,600 years ago. “However, the state of the climate on Earth today has already been changed by anthropogenically emitted greenhouse gases. Future CO2 release due to the proposed thawing of permafrost will be substantially less than the input due to fossil fuels. However, these emissions from permafrost soil are additional greenhouse gas sources that further amplify the anthropogenically induced effect,” says Köhler.

Background
The abrupt CO2 rise about 14,600 years ago examined by the scientists was one of three rapid fluctuations in the carbon cycle during the transition from the last ice age to the present interglacial. This was shown by American colleagues (Marcott et al.; doi:10.1038/nature13799) by means of new CO2 data from an ice core in West Antarctica that was published in the journal Nature at the end of October 2014. Since CO2 analyses on ice cores always contain only an averaged version of the atmospheric signal due to the inclusion process of the gases in the ice, the exact size of the CO2 pulse is still uncertain. Nevertheless, scientists can clearly determine that the rates of change in atmospheric CO2 during these abrupt CO2 rises were significantly lower than the corresponding rates caused by fossil fuels of approx. 2-3 ppm per year, which are occurring today.

Original Study
Peter Köhler, Gregor Knorr und Edouard Bard (2014): Permafrost thawing as a possible source of abrupt carbon release at the onset of the Bølling/Allerød. Nature Communications 5:5520; DOI: 10.1038/ncomms6520; http://www.nature.com/naturecommunications

Follow the Alfred Wegener Institute on Twitter and Facebook. In this way you will receive all current news as well as information on brief everyday stories about life at the institute.

The Alfred Wegener Institute conducts research in the Arctic, Antarctic and in the high and mid-latitude oceans. The Institute coordinates German polar research and provides important infrastructure such as the research icebreaker Polarstern and research stations in the Arctic and Antarctic to the national and international scientific world. The Alfred Wegener Institute is one of the 18 research centres of the Helmholtz Association, the largest scientific organisation in Germany.

www.awi.de

Ralf Röchert | idw - Informationsdienst Wissenschaft

More articles from Earth Sciences:

nachricht Six-decade-old space mystery solved with shoebox-sized satellite called a CubeSat
15.12.2017 | National Science Foundation

nachricht NSF-funded researchers find that ice sheet is dynamic and has repeatedly grown and shrunk
15.12.2017 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>