Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Outer space mission LISA Pathfinder: Fraunhofer IZFP puts two gold/platinum cubes to the acid test

02.03.2016

Until a few days ago – when the long-awaited epochal breakthrough of direct proof of gravitational waves was proclaimed at a press conference – in spite of intensive research scientists and researchers failed to verify the existence of gravitational waves as predicted by Albert Einstein's theory of general relativity.

Just on this account, the European Space Agency has sent a satellite into space which is to perform the preparatory work for the direct detection of gravitational waves predicted by Einstein. The central experiment of the mission involves two virtually identical high-precision cubes made of a gold-platinum alloy. These cubes were tested by engineers at Fraunhofer IZFP for their suitability and accuracy, both prerequisites for their smooth operation in space.


LISA Pathfinder in outer space

ESA–C. Carreau

LISA Pathfinder is a pre-project of a possible LISA-like mission, which is to track down both, gravitational waves and, in particular, their sources in deep space: Since December 2015, the LISA Pathfinder satellite (Laser Interferometer Space Antenna) was traveling in the outer space to its final orbit. Mid-February, approximately one and a half million kilometers from Earth, LISA Pathfinder carried out the last function tests of the scientific payload.

In early March, the actual, six-month mission is to begin. LISA Pathfinder has been approved by the "Science Programme Committee" of the ESA in November 2000 and launched on December 3, 2015.

Amongst others, two gold-platinum cubes serving as test masses are on board, each being held in a separate vacuum vessel. After reaching the final position in space they are released and then, positioned in zero gravity, floating freely.

Their respective positions – the cubes float in 38 cm distance from each other – have to be stable with considerable precision and must be monitored accordingly. The measurement of the relative accuracy of the positioning in the picometer range is crucial for the success of future gravitational wave experiments.

Another serious criterion for measuring the gravitational waves is given by the shape accuracy of the cubes’ surface structure: Both cubes must have one extremely precisely shaped surface whose deviation from the ideal shape is subject to extremely narrow limits. Only within these limits the provided measures can succeed.

With regard to the fulfillment of these extreme requirements both two kilogram cubes were put to the acid test by Fraunhofer IZFP’s engineers and scientists: In the test laboratories of this Saarland Institute high-frequency ultrasound examinations of the gold cubes’ near-surface regions were carried out, which are able to detect hidden cavities and inclusions down to a scale of 50 micrometers.

These investigations resulted in insights concerning the question of whether the cubes’ gravitational homogeneity is sufficient. Likewise, they substantially affected the decision of which side of each cube is to be processed further to "specular surfaces".

Background information concerning LISA Pathfinder and gravitational waves:
Beside ESA research institutes and industrial enterprises from Italy, Germany, UK, Spain, Switzerland, France and Netherlands participate in LISA Pathfinder (information by Deutsches Raumfahrtzentrum DLR).
As a space systems company Airbus Defence and Space GmbH (Friedrichshafen) is responsible for system integration and verification of the “LISA Technology Package” (LTP) instrument. The subsystems and modules of LTP are provided via the national space agencies and the European Space Agency by a consortium of European companies and research institutes such as the Max Planck Institute for Gravitational Physics or the Albert Einstein Institute in Hannover (AEI).

Weitere Informationen:

http://www.izfp.fraunhofer.de/en.html

Sabine Poitevin-Burbes | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

More articles from Earth Sciences:

nachricht Sea ice extent sinks to record lows at both poles
23.03.2017 | NASA/Goddard Space Flight Center

nachricht Less radiation in inner Van Allen belt than previously believed
21.03.2017 | DOE/Los Alamos National Laboratory

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>