Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Outer space mission LISA Pathfinder: Fraunhofer IZFP puts two gold/platinum cubes to the acid test

02.03.2016

Until a few days ago – when the long-awaited epochal breakthrough of direct proof of gravitational waves was proclaimed at a press conference – in spite of intensive research scientists and researchers failed to verify the existence of gravitational waves as predicted by Albert Einstein's theory of general relativity.

Just on this account, the European Space Agency has sent a satellite into space which is to perform the preparatory work for the direct detection of gravitational waves predicted by Einstein. The central experiment of the mission involves two virtually identical high-precision cubes made of a gold-platinum alloy. These cubes were tested by engineers at Fraunhofer IZFP for their suitability and accuracy, both prerequisites for their smooth operation in space.


LISA Pathfinder in outer space

ESA–C. Carreau

LISA Pathfinder is a pre-project of a possible LISA-like mission, which is to track down both, gravitational waves and, in particular, their sources in deep space: Since December 2015, the LISA Pathfinder satellite (Laser Interferometer Space Antenna) was traveling in the outer space to its final orbit. Mid-February, approximately one and a half million kilometers from Earth, LISA Pathfinder carried out the last function tests of the scientific payload.

In early March, the actual, six-month mission is to begin. LISA Pathfinder has been approved by the "Science Programme Committee" of the ESA in November 2000 and launched on December 3, 2015.

Amongst others, two gold-platinum cubes serving as test masses are on board, each being held in a separate vacuum vessel. After reaching the final position in space they are released and then, positioned in zero gravity, floating freely.

Their respective positions – the cubes float in 38 cm distance from each other – have to be stable with considerable precision and must be monitored accordingly. The measurement of the relative accuracy of the positioning in the picometer range is crucial for the success of future gravitational wave experiments.

Another serious criterion for measuring the gravitational waves is given by the shape accuracy of the cubes’ surface structure: Both cubes must have one extremely precisely shaped surface whose deviation from the ideal shape is subject to extremely narrow limits. Only within these limits the provided measures can succeed.

With regard to the fulfillment of these extreme requirements both two kilogram cubes were put to the acid test by Fraunhofer IZFP’s engineers and scientists: In the test laboratories of this Saarland Institute high-frequency ultrasound examinations of the gold cubes’ near-surface regions were carried out, which are able to detect hidden cavities and inclusions down to a scale of 50 micrometers.

These investigations resulted in insights concerning the question of whether the cubes’ gravitational homogeneity is sufficient. Likewise, they substantially affected the decision of which side of each cube is to be processed further to "specular surfaces".

Background information concerning LISA Pathfinder and gravitational waves:
Beside ESA research institutes and industrial enterprises from Italy, Germany, UK, Spain, Switzerland, France and Netherlands participate in LISA Pathfinder (information by Deutsches Raumfahrtzentrum DLR).
As a space systems company Airbus Defence and Space GmbH (Friedrichshafen) is responsible for system integration and verification of the “LISA Technology Package” (LTP) instrument. The subsystems and modules of LTP are provided via the national space agencies and the European Space Agency by a consortium of European companies and research institutes such as the Max Planck Institute for Gravitational Physics or the Albert Einstein Institute in Hannover (AEI).

Weitere Informationen:

http://www.izfp.fraunhofer.de/en.html

Sabine Poitevin-Burbes | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

More articles from Earth Sciences:

nachricht Six-decade-old space mystery solved with shoebox-sized satellite called a CubeSat
15.12.2017 | National Science Foundation

nachricht NSF-funded researchers find that ice sheet is dynamic and has repeatedly grown and shrunk
15.12.2017 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Error-free into the Quantum Computer Age

A study carried out by an international team of researchers and published in the journal Physical Review X shows that ion-trap technologies available today are suitable for building large-scale quantum computers. The scientists introduce trapped-ion quantum error correction protocols that detect and correct processing errors.

In order to reach their full potential, today’s quantum computer prototypes have to meet specific criteria: First, they have to be made bigger, which means...

Im Focus: Search for planets with Carmenes successful

German and Spanish researchers plan, build and use modern spectrograph

Since 2016, German and Spanish researchers, among them scientists from the University of Göttingen, have been hunting for exoplanets with the “Carmenes”...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

The body's street sweepers

18.12.2017 | Life Sciences

Fast flowing heat in layered material heterostructures

18.12.2017 | Materials Sciences

Life on the edge prepares plants for climate change

18.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>