Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Outer space mission LISA Pathfinder: Fraunhofer IZFP puts two gold/platinum cubes to the acid test

02.03.2016

Until a few days ago – when the long-awaited epochal breakthrough of direct proof of gravitational waves was proclaimed at a press conference – in spite of intensive research scientists and researchers failed to verify the existence of gravitational waves as predicted by Albert Einstein's theory of general relativity.

Just on this account, the European Space Agency has sent a satellite into space which is to perform the preparatory work for the direct detection of gravitational waves predicted by Einstein. The central experiment of the mission involves two virtually identical high-precision cubes made of a gold-platinum alloy. These cubes were tested by engineers at Fraunhofer IZFP for their suitability and accuracy, both prerequisites for their smooth operation in space.


LISA Pathfinder in outer space

ESA–C. Carreau

LISA Pathfinder is a pre-project of a possible LISA-like mission, which is to track down both, gravitational waves and, in particular, their sources in deep space: Since December 2015, the LISA Pathfinder satellite (Laser Interferometer Space Antenna) was traveling in the outer space to its final orbit. Mid-February, approximately one and a half million kilometers from Earth, LISA Pathfinder carried out the last function tests of the scientific payload.

In early March, the actual, six-month mission is to begin. LISA Pathfinder has been approved by the "Science Programme Committee" of the ESA in November 2000 and launched on December 3, 2015.

Amongst others, two gold-platinum cubes serving as test masses are on board, each being held in a separate vacuum vessel. After reaching the final position in space they are released and then, positioned in zero gravity, floating freely.

Their respective positions – the cubes float in 38 cm distance from each other – have to be stable with considerable precision and must be monitored accordingly. The measurement of the relative accuracy of the positioning in the picometer range is crucial for the success of future gravitational wave experiments.

Another serious criterion for measuring the gravitational waves is given by the shape accuracy of the cubes’ surface structure: Both cubes must have one extremely precisely shaped surface whose deviation from the ideal shape is subject to extremely narrow limits. Only within these limits the provided measures can succeed.

With regard to the fulfillment of these extreme requirements both two kilogram cubes were put to the acid test by Fraunhofer IZFP’s engineers and scientists: In the test laboratories of this Saarland Institute high-frequency ultrasound examinations of the gold cubes’ near-surface regions were carried out, which are able to detect hidden cavities and inclusions down to a scale of 50 micrometers.

These investigations resulted in insights concerning the question of whether the cubes’ gravitational homogeneity is sufficient. Likewise, they substantially affected the decision of which side of each cube is to be processed further to "specular surfaces".

Background information concerning LISA Pathfinder and gravitational waves:
Beside ESA research institutes and industrial enterprises from Italy, Germany, UK, Spain, Switzerland, France and Netherlands participate in LISA Pathfinder (information by Deutsches Raumfahrtzentrum DLR).
As a space systems company Airbus Defence and Space GmbH (Friedrichshafen) is responsible for system integration and verification of the “LISA Technology Package” (LTP) instrument. The subsystems and modules of LTP are provided via the national space agencies and the European Space Agency by a consortium of European companies and research institutes such as the Max Planck Institute for Gravitational Physics or the Albert Einstein Institute in Hannover (AEI).

Weitere Informationen:

http://www.izfp.fraunhofer.de/en.html

Sabine Poitevin-Burbes | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>