Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

One year alone in the deep sea of the Arctic

21.07.2016

First long-term mission of the AWI underwater robot Tramper from the research vessel Polarstern has begun

Far from any controls, an underwater robot has been working for the past few days in 2,500 metres of water on the seabed of the Arctic, after the completion of a successful test run. Researchers and engineers of the Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research (AWI) have deployed the deep-sea crawler Tramper for a year-round, fully autonomous mission for the first time.


Deep-Sea Crawler TRAMPER

Photo: Alfred-Wegener-Institut / F. Wenzhöfer

The mobile underwater robot, which has been developed within the Helmholtz Alliance Robotic Exploration of Extreme Environments (ROBEX), will now perform weekly oxygen measurements in the seabed.

Sleeping, driving, taking pictures, measuring – the job description for the AWI Tramper sounds easy. Since this underwater robot is supposed to do all of this autonomously in the Arctic deep sea for a year at a water temperature near the freezing point, though, the engineers and scientists are a little nervous.

Therefore, the program of the Polarstern expedition PS99.2 initially included a test run, which the AWI Tramper completed successfully: It was operating on the seabed for two days at a depth of 1,500 metres. Thereby Tramper travelled a total of 123 metres and performed seven measuring cycles, proving its operability.

Accordingly, the stage was set to deploy the underwater robot on the evening of 11 July 2016 for its long mission at the AWI deep-sea observatory 'Hausgarten' at a water depth of 2,500 metres. A video-guided deployment system (the so-called launcher) brought the crawler safely to the seabed, where it is now to perform its measurements every week. It first moves 15 metres in order to reach an undisturbed area.

An image recognition camera checks the surface there: If any stones or the like are recognised, Tramper travels on for another two metres. Then, a high-resolution photo of the measurement site is taken before the measurement begins. During this process, sensors are placed in the sediment in small increments of 0.1 millimetres, in order to measure the oxygen distribution in the seabed.

"After the measurement, Tramper goes to sleep for a week, to save energy. Ultimately, it should perform more than 52 such measurement cycles – and at a temperature of minus 1.8 degrees Celsius, which places a strong demand on the batteries," says Dr Frank Wenzhöfer, biologist at the Helmholtz Max Planck Joint Research Group for Deep-Sea Ecology and Technology. The scientists want to use the Tramper measurements in order to investigate the activity of microorganisms on the seabed.

Microorganisms are particularly responsible for the degradation of organic material in the deep seabed. Bacteria convert the remains of dead algae and animals while consuming the oxygen in the seabed. Depending on how much dead algae arrive on the seabed, there will be more or less bacterial activity and, therefore, more or less oxygen consumption.

"We want to use the measurements provided by Tramper to identify the natural variation over the course of the year," says Dr Frank Wenzhöfer in explaining the scientific objectives of the mission. "Statements can also be made about how the ecosystem of the Arctic seabed responds to environmental changes. Such data about the Arctic are still incomplete," the microbiologist adds.

"For studies by deep-sea ecologists, we have developed a new multi-sensor revolver-system, which is intended to guarantee the consistent quality of the measurements," says AWI engineer Dr Johannes Lemburg about the development work that is occurring in the context of the Helmholtz Alliance ROBEX (Robotic Exploration of Extreme Environments).

"It makes it possible to measure with three sensors at the same time and to exchange them after a certain number of measurements. Such an exchange of sensors can be performed six times with each of the three revolver, allowing a total of 18 sensors to be used," says Johannes Lemburg of the sophisticated system.

Engineers and scientists are already looking forward to their next expedition in the coming year: "In the summer of 2017, we are going to return with the RV Polarstern to the AWI 'Hausgarten', and we hope to pick up the Tramper safe and sound and full of valuable data!"

Scientific background for the use of the Tramper:

Recent expeditions in the Arctic Ocean are limited to the ice-free summer months and therefore only represent a snapshot of the activity on the seabed. Continuous as well as long-term measurements are needed, however, in order to understand the carbon cycle of the oceans and to record the consequences of climate change. The measurement of oxygen consumption on the seafloor provides an estimate about the conversion of organic material there (benthic activity). The inhabitants of the deep seabed depend entirely on the supply of material from the sea surface.

Primary production at the sea surface is highly variable: It depends on the availability of nutrients, the sunlight and the sea ice coverage. It is therefore to be expected that such variability also influence the amount of the organic matter which is supplied to the deep sea.

Time series analyses performed by the Alfred Wegener Institute for Polar and Marine Research at the 'Hausgarten' Deep-Sea Observatory by means of sediment trap measurements confirmed such a variable export of material from the surface to the deep sea. Until recently, though, direct measurements of related benthic activity could only be conducted during individual ship expeditions, and continuous measurements for the Arctic have not been available.

Temporal high-resolution measurements that record the variations in benthic activity are very important to model the carbon cycle in the Arctic and to document long-term influences. This input is essential to be able to evaluate the consequences of climate change and the long-term effects on the Arctic seabed.

Tramper now makes it possible to perform weekly measurements of the benthic oxygen consumption and to correlate the data with the incoming organic material. Scientists expect higher consumption rates in periods of increased surface primary production and export of material, i.e., higher rates in summer and lower rates in winter. Especially interesting is the influence of the ice coverage in this Arctic sea area, the transition from the winter to the summer phase and how the activity at the sea floor is associated with the surface activity from a temporal perspective.

Notes for Editors:

Printable photographs as well as a video of the Tramper can be found in the online version of this press release at: http://www.awi.de/nc/en/about-us/service/press.html

A notification from the first test of the Tramper in warmer climates can be found here: http://www.awi.de/nc/en/about-us/service/press/press-release/erste-autonome-fahrten-des-roboters-tramper-in-der-tiefsee.html

Another exciting report from the Polarstern expedition can be found here: http://www.awi.de/nc/en/about-us/service/press/press-release/aus-der-luft-dem-arktischen-meeresmuell-auf-der-spur.html

You can find more information on the Helmholtz Alliance ROBEX here: http://www.robex-allianz.de/en/

Please contact Dr Frank Wenzhöfer (tel.: +49(0)471 4831-2182; e-mail: frank.wenzhoefer(at)awi.de) and Dr Johannes Lemburg (tel.: +49(0)471 4831-2524; e-mail: johannes.lemburg(at)awi.de) and, in the press office, Dr Folke Mehrtens (tel.: +49(0)471 4831-2007; e-mail: Folke.Mehrtens(at)awi.de).

The Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) conducts research in the Arctic, Antarctic and oceans of the high and mid-latitudes. It coordinates polar research in Germany and provides major infrastructure to the international scientific community, such as the research icebreaker Polarstern and stations in the Arctic and Antarctica. The Alfred Wegener Institute is one of the 18 research centres of the Helmholtz Association, the largest scientific organisation in Germany.

Ralf Röchert | idw - Informationsdienst Wissenschaft

More articles from Earth Sciences:

nachricht Sea ice extent sinks to record lows at both poles
23.03.2017 | NASA/Goddard Space Flight Center

nachricht Less radiation in inner Van Allen belt than previously believed
21.03.2017 | DOE/Los Alamos National Laboratory

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>