Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Oceans may be large, overlooked source of hydrogen gas

21.07.2016

Gas may lie near slow-spreading tectonic plates on the seafloor

Rocks formed beneath the ocean floor by fast-spreading tectonic plates may be a large and previously overlooked source of free hydrogen gas (H2), a new Duke University study suggests.


Deposits of serpentinized rock such as this could be a previously overlooked source of free hydrogen gas, a new Duke study finds.

Credit: NOAA Ocean Explorer

The finding could have far-ranging implications since scientists believe H2 might be the fuel source responsible for triggering life on Earth. And, if it were found in large enough quantities, some experts speculate that it could be used as a clean-burning substitute for fossil fuels today because it gives off high amounts of energy when burned but emits only water, not carbon.

Recent discoveries of free hydrogen gas, which was once thought to be very rare, have been made near slow-spreading tectonic plates deep beneath Earth's continents and under the sea.

"Our model, however, predicts that large quantities of H2 may also be forming within faster-spreading tectonic plates -- regions that collectively underlie roughly half of the Mid-Ocean Ridge," said Stacey L. Worman, a postdoctoral fellow at the University of Texas at Austin, who led the study while she was a doctoral student at Duke's Nicholas School of the Environment.

Total H2 production occurring beneath the oceans is at least an order of magnitude larger than production occurring under continents, the model suggests.

"A major benefit of this work is that it provides a testable, tectonic-based model for not only identifying where free hydrogen gas may be forming beneath the seafloor, but also at what rate, and what the total scale of this formation may be, which on a global basis is massive," said Lincoln F. Pratson, professor of earth and ocean sciences at Duke, who co-authored the study.

The scientists published their peer-reviewed study in the July 14 online edition of the journal Geophysical Research Letters.

The new model calculates the amount of free hydrogen gas produced and stored beneath the seafloor based on a range of parameters -- including the ratio of a site's tectonic spreading rate to the thickness of serpentinized rocks that might be found there.

Serpentinized rocks -- so called because they often have a scaly, greenish-brown-patterned surface that resembles snakeskin -- are rocks that have been chemically altered by water as they are lifted up by the spreading tectonic plates in Earth's crust.

Molecules of free hydrogen gas are produced as a by-product of the serpentinization process.

"Most scientists previously thought all hydrogen production occurs only at slow-spreading lithosphere, because this is where most serpentinized rocks are found. Although faster-spreading lithosphere contains smaller quantities of this rock, our analysis suggests the amount of H2 produced there might still be large," Worman said.

"Right now, the only way to get H2 -- to use in fuel cells, for example -- is through secondary processes," Worman explained. "You start with water, add energy to split the oxygen and hydrogen molecules apart, and get H2. You can then burn the H2, but you had to use energy to get energy, so it's not very efficient."

Mining free hydrogen gas as a primary fuel source could change that, but first scientists need to understand where the gas goes after it's produced. "Maybe microbes are eating it, or maybe it's accumulating in reservoirs under the seafloor. We still don't know," Worman said. "Of course, such accumulations would have to be quite significant to make hydrogen gas produced by serpentinization a viable fuel source."

If further research confirms the model's accuracy, it could also open new avenues for exploring the origin of life on Earth, and for understanding the role hydrogen gas might play in supporting life in a wide range of extreme environments, from the sunless deep-sea floor to distant planets.

###

Worman and Pratson conducted the study with Jeffrey Karson, professor of earth sciences at Syracuse University, and Emily Klein, professor of earth sciences at Duke.

Worman received her Ph.D. in earth and ocean sciences from Duke in 2015.

CITATION: "Global Rate and Distribution of H2 Gas Produced by Serpentinization within Oceanic Lithosphere," Stacey L. Worman, Lincoln F. Pratson, Jeffrey Karson, Emily Klein. Geophysical Research Letters, July 14, 2016. DOI: 10.1002/2016GL069066

Media Contact

Tim Lucas
tdlucas@duke.edu
919-613-8084

@DukeU

http://www.duke.edu 

Tim Lucas | EurekAlert!

More articles from Earth Sciences:

nachricht Sea ice extent sinks to record lows at both poles
23.03.2017 | NASA/Goddard Space Flight Center

nachricht Less radiation in inner Van Allen belt than previously believed
21.03.2017 | DOE/Los Alamos National Laboratory

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>