Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ocean acidification takes a toll on California's coastline at nighttime

21.03.2016

A new study, based on the most-extensive set of measurements ever made in tide pools, suggests that ocean acidification will increasingly put many marine organisms at risk by exacerbating normal changes in ocean chemistry that occur overnight. Conducted along California's rocky coastline, the study from Carnegie's Ken Caldeira and Lester Kwiatkowski shows that the most-vulnerable organisms are likely to be those with calcium carbonate shells or skeletons. It is published by Scientific Reports.

When carbon dioxide emissions from cars or power plants are absorbed by the oceans, it changes seawater chemistry and makes it more acidic, a process called "ocean acidification." Increasing ocean acidity makes it difficult for organisms that construct their shells and exoskeletons out of calcium carbonate, such as mussels and oysters, to continue to build these protective layers. In high enough concentrations, carbon dioxide can even cause these shells and skeletons to dissolve entirely.


This image shows sampling pump and a device to measure temperature, salinity and depth in a tide pool of the UC Bodega Marine Reserve.

Photo credit: Lester Kwiatkowski

Tide pools along California's rocky coast are isolated from the open ocean during low tides. During the daytime, photosynthesis--the mechanism by which plants convert the Sun's energy and atmospheric carbon dioxide into sugar, giving off oxygen in the process--takes up carbon dioxide from the seawater and acts to reverse ocean acidification's effects. However, at night, plants and animals respire just like we do, taking up oxygen and releasing carbon dioxide. This adds carbon dioxide to the seawater and exacerbates effects of ocean acidification, causing the increasing risk to calcifying organisms.

Observing a variety of California's natural rocky tide pools on the UC Bodega Marine Laboratory, the authors found that the rate of shell and skeletal growth was not greatly affected by seawater chemistry in the daytime. However, during low tide at night, water in the tide pools became corrosive to calcium carbonate shells and skeletons. The study found evidence that the rate at which these shells and skeletons dissolved during these nighttime periods was greatly affected by seawater chemistry.

"Unless carbon dioxide emissions are rapidly curtailed, we expect ocean acidification to continue to lower the pH of seawater," said Kwiatkowski, the study's lead author. "This work highlights that even in today's temperate coastal oceans, calcifying species, such as mussels and coralline algae, can dissolve during the night due to the more-acidic conditions caused by community respiration."

Caldeira added: "If what we see happening along California's coast today is indicative of what will continue in the coming decades, by the year 2050 there will likely be twice as much nighttime dissolution as there is today. Nobody really knows how our coastal ecosystems will respond to these corrosive waters, but it certainly won't be well."

###

Their paper is a collaborative effort by the Carnegie Institution for Science, the University of California Davis and the University of California Santa Cruz.

A set of photos showing this research is available here: http://dge.stanford.edu/labs/caldeiralab/PMTidepoolsPressPhotos.html

This work was funded by the Carnegie Institution for Science, UC Multi-campus Research Initiatives and Programs, and the National Science Foundation.

Ken Caldeira | EurekAlert!

More articles from Earth Sciences:

nachricht Impacts of mass coral die-off on Indian Ocean reefs revealed
21.02.2017 | University of Exeter

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>