Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ocean acidification makes coralline algae less robust

08.02.2016

Ocean acidification (the ongoing decrease in the pH of the Earth's oceans, caused by the uptake of CO2 from the atmosphere), is affecting the formation of the skeleton of coralline algae which play an important part in marine biodiversity, new research from the University of Bristol, UK has found.

Coralline red algae form maerl beds which provide important habitat in shallow waters, including the UK coastal shelf. Maerl hosts a high diversity of organisms by providing habitats, shelter and nursery areas for, amongst others, fish larvae and young scallops. Both coralline algae and the maerl beds they generate are protected by national and international regulation as they form biodiversity hotspots and support fisheries.


This is coralline algae (with a scale bar of 1cm). New research from the University of Bristol, UK has found that ocean acidification is affecting the formation of the skeleton of coralline algae which play an important part in marine biodiversity.

Credit: Leanne Melbourne

The skeletal structure of coralline algae is composed of high- magnesium calcite, the most soluble form of calcium carbonate, and is therefore potentially vulnerable to the change in carbonate chemistry resulting from the absorption of man-made CO2 by the ocean.

Previous Bristol-led research has shown that ocean acidification affects coralline algae by reducing the thickness of their cell walls and thus their structural strength, crucial for withstanding natural stresses such as wave movement or grazing. It also showed that, given enough time, the algae can acclimatise and continue to grow.

In a new study, published today in Scientific Reports, Dr Federica Ragazzola and colleagues assessed this new growth to see whether it is of the same quality as before and hence whether coralline algae are able to grow as strong a skeleton under climate change conditions. The strength of this skeletal structure is important as it impacts the ability of alga to provide shelter for other species.

The researchers found that, under ocean acidification, the chemical composition of the skeleton is changing, making it potentially more brittle.

Professor Daniela Schmidt, Head of Global Change at the Cabot Institute and senior author of the study said: "Our research suggests that in the near future these organisms are not sufficiently calcified to provide habitat for other species. Coralline algae support a huge variety of marine life, with more than 460 species associated with their beds including economically important species such as scallops.

"While a number of studies have now shown that coralline algae can continue to grow even in challenging environmental conditions, it is fundamentally important that we combine these physiological studies with potential impacts on the structural integrity of the skeleton and its consequences to habitat formation."

###

Paper

'Impact of high CO2 on the geochemistry of the coralline algae Lithothamnion glaciale' by F. Ragazzola, L.C. Foster, C.J. Jones, T B. Scott, J. Fietzke, Matt R. Kilburn and D.N. Schmidt in Scientific Reports

Media Contact

Hannah Johnson
hannah.johnson@bristol.ac.uk
44-117-928-8896

 @BristolUni

http://www.bristol.ac.uk 

Hannah Johnson | EurekAlert!

More articles from Earth Sciences:

nachricht Devils Hole: Ancient Traces of Climate History
24.05.2017 | Universität Innsbruck

nachricht Supercomputing helps researchers understand Earth's interior
23.05.2017 | University of Illinois College of Liberal Arts & Sciences

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Devils Hole: Ancient Traces of Climate History

24.05.2017 | Earth Sciences

Discovery of a Key Regulatory Gene in Cardiac Valve Formation

24.05.2017 | Life Sciences

A CLOUD of possibilities: Finding new therapies by combining drugs

24.05.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>