Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technique shows shale-drilling additives in drinking-water taps near leak

05.05.2015

Substances commonly used for drilling or extracting Marcellus shale gas foamed from the drinking water taps of three Pennsylvania homes near a reported well-pad leak, according to new analysis from a team of scientists.

The researchers used a new analytical technique on samples from the homes and found a chemical compound, 2-BE, and an unidentified complex mixture of organic contaminants, both commonly seen in flowback water from Marcellus shale activity. The scientists published their findings this week in Proceedings of the National Academy of Sciences.


This is a bottle containing foam from a water source.

Credit: Susan Brantley, Penn State

"These findings are important because we show that chemicals traveled from shale gas wells more than two kilometers in the subsurface to drinking water wells," said co-author Susan Brantley, distinguished professor of geosciences and director of the Earth and Environmental Institute at Penn State. "The chemical that we identified either came from fracking fluids or from drilling additives and it moved with natural gas through natural fractures in the rock. In addition, for the first time, all of the data are released so that anyone can study the problem."

Such contamination from shale gas wells in shallow potable water sources has never been fully documented before, Brantley said. The new technique could be a valuable tool in evaluating alleged causes of unconventional gas drilling impacts to groundwater.

"More studies such as ours need to be disseminated to the general public to promote transparency and to help guide environmental policies for improving unconventional gas development," said Garth Llewellyn, principal hydrogeologist at Appalachia Hydrogeologic and Environmental Consulting and the paper's lead author.

The affected homes are located near a reported pit leak at a Marcellus shale gas well pad. Scientists believe stray natural gas and wastewater were driven one to three kilometers (0.6 to 1.8 miles) laterally along shallow to intermediate depth fractures to the source of the homes' well water.

State environmental regulators previously found high levels of natural gas in the water, but did not discover flowback water contamination above regulatory limits and could not determine what was making the water foam, according to the researchers.

The team used highly sophisticated equipment and tested for a range of possible contaminants at low concentration levels, rather than testing for specific substances.

"This work demonstrates that these events are possible, but that more sophisticated analytical work may be necessary to uncover the details of the impact," said co-author Frank Dorman, associate professor of biochemistry and molecular biology, Penn State. "In short, we were able to confirm water contamination because we are using non-conventional techniques. Specifically, GCxGC-TOFMS allowed for the characterization of this drinking water where routine testing was not able to determine what was causing the foaming." GC-GC-TOFMS is a form of gas chromatography coupled with mass spectrometry.

The homes were sold to the gas company as part of a legal settlement in 2012, but scientists received samples before the transfer.

Also working on this project were Jennifer Westland, former researcher assistant; David Yoxtheimer, research assistant, Marcellus Center for Outreach and Research, Penn State; Paul Grieve, former graduate student; Todd Sowers, senior scientist in geosciences, Earth and Environmental Systems Institute, Penn State; Elizabeth Humston-Fulmer, applications chemist, Leco Coperation.

The National Science Foundation, Penn State Earth and Environmental Systems Institute, Restek Corp., and Leco Corp. supported this work.

Media Contact

A'ndrea Elyse Messer
aem1@psu.edu
814-865-9481

 @penn_state

http://live.psu.edu

A'ndrea Elyse Messer | EurekAlert!

More articles from Earth Sciences:

nachricht Large-Mouthed Fish Was Top Predator After Mass Extinction
26.07.2017 | Universität Zürich

nachricht Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds
25.07.2017 | University of Illinois at Urbana-Champaign

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>