Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New study upends a theory of how Earth's mantle flows


Small-scale processes may have big effects

A new study carried out on the floor of Pacific Ocean provides the most detailed view yet of how the earth's mantle flows beneath the ocean's tectonic plates. The findings, published in the journal Nature, appear to upend a common belief that the strongest deformation in the mantle is controlled by large-scale movement of the plates. Instead, the highest resolution imaging yet reveals smaller-scale processes at work that have more powerful effects.

Illustrations show how (a) pressure gradient-driven flow and (b) density-driven small-scale convection could work in the asthenosphere. At the top is the surface view showing the locations of the NoMelt seismometers. The red arrows indicated the flow direction.

Credit: Lin et al., Nature 2016

By developing a better picture of the underlying engine of plate tectonics, scientists hope to gain a better understanding of the mechanisms that drive plate movement and influence related process, including those involving earthquakes and volcanoes.

When we look out at the earth, we see its rigid crust, a relatively thin layer of rock that makes up the continents and the ocean floor. The crust sits on tectonic plates that move slowly over time in a layer called the lithosphere. At the bottom of the plates, some 80 to 100 kilometers below the surface, the asthenosphere begins. Earth's interior flows more easily in the asthenosphere, and convection here is believed to help drive plate tectonics, but how exactly that happens and what the boundary between the lithosphere and asthenosphere looks like isn't clear.

To take a closer look at these processes, a team led by scientists from Columbia University's Lamont-Doherty Earth Observatory installed an array of seismometers on the floor of the Pacific Ocean, near the center of the Pacific Plate. By recording seismic waves generated by earthquakes, they were able to look deep inside the earth and create images of the mantle's flow, similar to the way a doctor images a broken bone.

Seismic waves move faster through flowing rock because the pressure deforms the crystals of olivine, a mineral common in the mantle, and stretches them in the same direction. By looking for faster seismic wave movement, scientists can map where the mantle is flowing today and where it has flowed in the past.

Three basic forces are believed to drive oceanic plate movement: plates are "pushed" away from mid-ocean ridges as new sea floor forms; plates are "pulled" as the oldest parts of the plate dive back into the earth at subduction zones; and convection within the asthenosphere helps ferry the plates along. If the dominant flow in the asthenosphere resulted solely from "ridge push" or "plate pull," then the crystals just below the plate should align with the plate's movement. The study finds, however, that the direction of the crystals doesn't correlate with the apparent plate motion at any depth in the asthenosphere. Instead, the alignment of the crystals is strongest near the top of the lithosphere where new sea floor forms, weakest near the base of the plate, and then peaks in strength again about 250 kilometers below the surface, deep in the asthenosphere.

"If the main flow were the mantle being sheared by the plate above it, where the plate is just dragging everything with it, we would predict a fast direction that's different than what we see," said coauthor James Gaherty, a geophysicist at Lamont-Doherty. "Our data suggest that there are two other processes in the mantle that are stronger: one, the asthenosphere is clearly flowing on its own, but it's deeper and smaller scale; and, two, seafloor spreading at the ridge produces a very strong lithospheric fabric that cannot be ignored." Shearing probably does happen at the plate boundary, Gaherty said, but it is substantially weaker.

Donald Forsyth, a marine geophysicist at Brown University who was not involved in the new study, said, "These new results will force reconsideration of prevailing models of flow in the oceanic mantle."

Looking at the entire upper mantle, the scientists found that the most powerful process causing rocks to flow happens in the upper part of the lithosphere as new sea floor is created at a mid-ocean ridge. As molten rock rises, only a fraction of the flowing rock squeezes up to the ridge. On either side, the pressure bends the excess rock 90 degrees so it pushes into the lithosphere parallel to the bottom of the crust. The flow solidifies as it cools, creating a record of sea floor spreading over millions of years.

This "corner flow" process was known, but the study brings it into greater focus, showing that it deforms the rock crystals to a depth of at least 50 kilometers into the lithosphere.

In the asthenosphere, the patterns suggest two potential flow scenarios, both providing evidence of convection channels that bottom out about 250 to 300 kilometers below the earth's surface. In one scenario, differences in pressure drive the flow like squeezing toothpaste from a tube, causing rocks to flow east-to-west or west-to-east within the channel. The pressure difference could be caused by hot, partially molten rock piled up beneath mid-ocean ridges or beneath the cooling plates diving into the earth at subduction zones, the authors write. Another possible scenario is that small-scale convection is taking place within the channel as chunks of mantle cool and sink. High-resolution gravity measurements show changes over relatively small distances that could reflect small-scale convection.

"The fact that we observe smaller-scale processes that dominate upper-mantle deformation, that's a big step forward. But it still leaves uncertain what those flow processes are. We need a wider set of observations from other regions," Gaherty said.

The study is part of the NoMelt project, which was designed to explore the lithosphere-asthenosphere boundary at the center of an oceanic plate, far from the influence of melting at the ridge. The scientists believe the findings here are representative of the Pacific Basin and likely ocean basins around the world.

NoMelt is unique because of its location. Most studies use land-based seismometers at edge of the ocean that tend to highlight the motion of the plates over the asthenosphere because of its large scale and miss the smaller-scale processes. NoMelt's ocean bottom seismometer array, with the assistance of Lamont's seismic research ship the Marcus G. Langseth, recorded data from earthquakes and other seismic sources from the middle of the plate over the span of a year.


The lead author of the study is PeiYing (Patty) Lin, who conducted the analysis while a postdoctoral fellow at Lamont-Doherty Earth Observatory. The other coauthors are former Lamont graduate student Ge Jin; John Collins, Daniel Lizarralde and Rob Evans of Woods Hole Oceanographic Institution; and Greg Hirth of Brown University. The research was supported in part by the National Science Foundation.

The paper, "High-resolution seismic constraints on flow dynamics in the oceanic asthenosphere," is available from the author.

Scientist contact:

Jim Gaherty (845) 365-8450

More information: Kevin Krajick, Senior editor, science news, The Earth Institute 212-854-9729

Lamont-Doherty Earth Observatory is Columbia University's home for Earth science research. Its scientists develop fundamental knowledge about the origin, evolution and future of the natural world, from the planet's deepest interior to the outer reaches of its atmosphere, on every continent and in every ocean, providing a rational basis for the difficult choices facing humanity. | @LamontEarth

The Earth Institute, Columbia University mobilizes the sciences, education and public policy to achieve a sustainable earth.

Kevin Krajick | EurekAlert!

Further reports about: Earth Earth Observatory crystals earthquakes lithosphere sea floor

More articles from Earth Sciences:

nachricht Wandering greenhouse gas
16.03.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Unique Insights into the Antarctic Ice Shelf System
14.03.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>