Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research unlocks forests' potential in climate change mitigation

21.04.2017

New insights into the impact forests have on surface temperature will provide a valuable tool in efforts to mitigate climate change, according to a new research paper co-authored by Clemson University scientist Thomas O'Halloran.

For the first time, scientists have created a global map measuring the cooling effect forests generate by regulating the exchange of water and energy between the Earth's surface and the atmosphere. In many locations, this cooling effect works in concert with forests' absorption of carbon dioxide.


Clemson University scientist Thomas O'Halloran works atop a 120-foot tower.

Credit: Rob Alexander

By coupling information from satellites with local data from sensors mounted to research towers extending high above tree canopies, O'Halloran and his collaborators throughout the world have given a much more complete, diagnostic view of the roles forests play in regulating climate.

Their findings have important implications for how and where different types of land cover can be used to mitigate climate change with forest protection programs and data-driven land-use policies. Results of their study were recently published in the journal Nature Climate Change.

"It's our hope that such global maps can be used to optimize biophysics in addition to carbon when planning land-use climate change mitigation projects," said O'Halloran, assistant professor of Forestry and Environmental Conservation at Clemson's Baruch Institute of Coastal Ecology and Forest Science in Georgetown.

Previously, scientists measured vegetation's impact on local land temperatures using satellite imagery, which is limited to only clear-sky days and few measurements per day, or they used local stations, which are limited in their reach. Integrating data from towers extending more than 100 feet in the air with satellite measurements allows for a more advanced view of the variables impacting surface temperature. The research team found that forests' cooling effect was greater than thought and most pronounced in mid- and low-latitude regions.

This new statistical model of analyzing forests' impact on local temperature will allow communities around the world to pinpoint ideal locations for forest protection or reforestation efforts.

"We wanted every country in the world to have some estimation of the cooling effects of forests and vegetation," O'Halloran said. "It's about optimizing the benefit of land management for climate change mitigation."

A tower similar to those used for this study is under construction at Baruch in collaboration with the University of South Carolina to help provide greater analysis of local climate, he said.

"The towers will really help us understand how ecosystems respond to change," O'Halloran said. "In South Carolina, we've had a lot of extreme weather events, droughts, flood and hurricanes. This will help us understand the resilience of local ecosystems to those types of events."

O'Halloran co-authored the article in Nature Climate Change with lead author Ryan Bright of The Norwegian Institute of Bioeconomy Research in Norway and several additional collaborators throughout Europe and the United States.

Unlike local climate changes owed to global emissions of CO2 and other greenhouse gases, local climate changes linked to land-related activities are unique in that they are only influenced by the local land-use policies that are in place, Bright said.

"The results of our study now make it easier for individual nations or regions to begin measuring and enforcing climate policies resulting in tangible mitigation or adaptation benefits at the local scale," says Bright. "This is especially critical moving forward in a world facing increasing competition for land resources."

###

Other research collaborators were Edouard Davin of the Institute for Atmospheric and Climate Science in Switzerland; Julia Pongratz of the Max Planck Institute for Meteorology in Germany; Kaiguang Zhao of the School of Environment and Natural Resources at The Ohio State University; and Alessandro Cescatti of the European Commission's Joint Research Centre in Italy.

Media Contact

Scott Miller
srm4@clemson.edu
309-854-1448

 @researchcu

http://www.clemson.edu 

Scott Miller | EurekAlert!

More articles from Earth Sciences:

nachricht Sediment from Himalayas may have made 2004 Indian Ocean earthquake more severe
26.05.2017 | Oregon State University

nachricht Devils Hole: Ancient Traces of Climate History
24.05.2017 | Universität Innsbruck

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>