Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research maps areas most vulnerable to ocean acidification

14.10.2015

New NOAA-led research maps the distribution of aragonite saturation state in both surface and subsurface waters of the global ocean and provides further evidence that ocean acidification is happening on a global scale. The study identifies the Arctic and Antarctic oceans, and the upwelling ocean waters off the west coasts of North America, South America and Africa as regions that are especially vulnerable to ocean acidification.

"These findings will help us better understand and develop strategies to adapt to the severity of ocean acidification in different marine ecosystems around the world," said Richard A. Feely, a NOAA oceanographer and co-author of the study, which has been accepted for publication and can be read online in the American Geophysical Union journal Global Biogeochemical Cycles.


This map shows the global distribution of aragonite saturation at 50 meters depth. The graphic shows areas that are most vulnerable to ocean acidification since they are regions where the saturation of aragonite is lower. Aragonite is a calcium carbonate mineral that shellfish use to build their shells.

Credit: NOAA

Ocean acidification is caused by humankind's release of carbon dioxide emissions to the atmosphere. Excess carbon dioxide enters the ocean, reacts with water, decreases ocean pH and lowers carbonate ion concentrations, making waters more corrosive to marine species that need carbonate ions and dissolved calcium to build and maintain healthy shells and skeletons. The saturation state of seawater for a mineral such as aragonite is a measure of the potential for the mineral to form or to dissolve.

In the new study, scientists determined the saturation state of aragonite in order to map regions that are vulnerable to ocean acidification. Waters with higher aragonite saturation state tend to be better able to support shellfish, coral and other species that use this mineral to build and maintain their shells and other hard parts.

This study shows that aragonite saturation state in waters shallower than 328 feet or 100 meters depth decreased by an average of 0.4 percent per year from the decade spanning 1989-1998 to the decade spanning 1998-2010. "A decline in the saturation state of carbonate minerals, especially aragonite, is a good indicator of a rise in ocean acidification," said Li-Qing Jiang, an oceanographer with NOAA's Cooperative Institute for Climate and Satellites at the University of Maryland and lead author.

The most vulnerable areas of the global ocean are being hit with a double whammy of sorts. In these areas, deep ocean waters that are naturally rich in carbon dioxide are upwelling and mixing with surface waters that are absorbing carbon dioxide from the atmosphere. The carbon dioxide from the atmosphere is coming primarily from human-caused fossil fuel emissions.

"When oyster larvae are born they must draw on the energy in their yolk to build their aragonite shells to protect themselves from predators and grow into healthy adults," said Feely. In waters depleted of carbonate ions, young oysters must expend more energy to build their shell and may not survive. This has significant consequences for the seafood industry."

###

To read the research in the American Geophysical Union journal Global Biogeochemical Cycles, "Climatological distribution of aragonite saturation in the global oceans," please go online to: http://onlinelibrary.wiley.com/doi/10.1002/2015GB005198/full

For access to the data used in the study, please see the archive of NOAA National Centers for Environmental Information: http://data.nodc.noaa.gov/geoportal/rest/find/document?searchText=%22GLODAP%22&f=searchPage

NOAA's mission is to understand and predict changes in the Earth's environment, from the depths of the ocean to the surface of the sun, and to conserve and manage our coastal and marine resources. Join us on Facebook, Twitter, Instagram and our other social media channels.

Media Contact

Monica Allen
monica.allen@noaa.gov
301-734-1123

 @NOAA

Monica Allen | EurekAlert!

More articles from Earth Sciences:

nachricht NASA eyes Pineapple Express soaking California
24.02.2017 | NASA/Goddard Space Flight Center

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

NASA eyes Pineapple Express soaking California

24.02.2017 | Earth Sciences

New gene for atrazine resistance identified in waterhemp

24.02.2017 | Agricultural and Forestry Science

New Mechanisms of Gene Inactivation may prevent Aging and Cancer

24.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>