Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Kind of Hydrothermal Vent System Found in Caribbean

04.01.2016

Researchers from the University of Southampton (UK) have identified hydrothermal vents in the deep sea of the Caribbean which are unlike any found before.

Collaborating with colleagues at the National Oceanography Centre, the team has revealed active vents in the Von Damm Vent Field (VDVF) that are unusual in their structure, formed largely of talc, rather than the more usual sulphide minerals.


National Oceanography Centre, Southampton

The main vent at the Von Damm vent field


National Oceanography Centre, Southampton

High resolution 3D bathymetry of the Von Damm vent field

Lead researcher Matthew Hodgkinson and colleagues analysed samples from the VDVF – a vent field south of the Cayman Islands discovered by scientists and crew on board the RRS James Cook in 2010. Results of the analysis are now published in the journal Nature Communications.


Matthew comments: “This vent site is home to a community of fauna similar to those found at the Mid-Atlantic Ridge in the Atlantic Ocean, but the minerals and chemistry at the Von Damm site are very different to any other known vents.”

Hydrothermal vents form in areas where the Earth’s tectonic plates are spreading. At these sites, circulating seawater is heated by magma below the seafloor and becomes more acidic – leaching metals from the surrounding rocks and redepositing them as the hot water spews out of vents or ‘chimneys’ at the seabed and hits the cold seawater.

The scientists have also found the VDVF system has a very energetic heat flux (the amount of energy it emits into the surrounding ocean) of around 500 megawatts. This is much more than would be expected since the VDVF, on the slopes of an underwater mountain and away from a large magma supply, is on the edge of a spreading area and not in between two separating tectonic plates. The unusual positioning of this new vent field suggests that other similar ones elsewhere in the world may have been overlooked.


Matthew Hodgkinson adds: “If more of these unusual sites exist they could be important contributors in the exchange of chemicals and heat between the Earth’s interior and the oceans, and may be missing from current global assessments of hydrothermal impact on the oceans.”

Notes for editors:

1) For images from the Von Damm Vent Field and a copy of the paper Talc-dominated seafloor deposits reveal a new class of hydrothermal system
(Matthew R.S. Hodgkinson, Alexander P. Webber, Stephen Roberts,
Rachel A. Mills, Douglas P. Connelly & Bramley J. Murton, DOI: 10.1038/ncomms10150) please contact Peter Franklin, Media Relations, University of Southampton Tel 023 8059 5457 Email p.franklin@southampton.ac.uk


2) Through world-leading research and enterprise activities, the University of Southampton connects with businesses to create real-world solutions to global issues. Through its educational offering, it works with partners around the world to offer relevant, flexible education, which trains students for jobs not even thought of. This connectivity is what sets Southampton apart from the rest; we make connections and change the world.

www.southampton.ac.uk/weareconnected
#weareconnected


3) The National Oceanography Centre (NOC) is the UK’s leading institution for integrated coastal and deep ocean research. NOC undertakes and facilitates world-class agenda-setting scientific research to understand the global ocean by solving challenging multidisciplinary, large scale, long-term marine science problems to underpin international and UK public policy, business and wider society outcomes.

NOC operates the Royal Research Ships James Cook and Discovery and develops technology for coastal and deep ocean research. Working with its partners NOC provides long-term marine science capability including: sustained ocean observing, mapping and surveying; data management and scientific advice.

NOC operates at two sites, Southampton and Liverpool, with the headquarters based in Southampton.

Among the resources that NOC provides on behalf of the UK are the British Oceanographic Data Centre (BODC), the Marine Autonomous and Robotic Systems (MARS) facility, the National Tide and Sea Level Facility (NTSLF), the Permanent Service for Mean Sea Level (PSMSL) and British Ocean Sediment Core Research Facility (BOSCORF).

The National Oceanography Centre is wholly owned by the Natural Environment Research Council (NERC).
  www.noc.ac.uk
For further information contact:

Peter Franklin, Media Relations, University of Southampton, Tel: 023 8059 5457, Email: p.franklin@southampton.ac.uk

www.soton.ac.uk/mediacentre/

Follow us on twitter: www.twitter.com/unisouthampton

Like us on Facebook: www.facebook.com/unisouthampton

Peter Franklin | newswise

Further reports about: Hydrothermal deep ocean magma tectonic plates

More articles from Earth Sciences:

nachricht New study reveals where MH370 debris more likely to be found
27.07.2016 | European Geosciences Union

nachricht Exploring one of the largest salt flats in the world
27.07.2016 | University of Massachusetts at Amherst

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-assembling nano inks form conductive and transparent grids during imprint

Transparent electronics devices are present in today’s thin film displays, solar cells, and touchscreens. The future will bring flexible versions of such devices. Their production requires printable materials that are transparent and remain highly conductive even when deformed. Researchers at INM – Leibniz Institute for New Materials have combined a new self-assembling nano ink with an imprint process to create flexible conductive grids with a resolution below one micrometer.

To print the grids, an ink of gold nanowires is applied to a substrate. A structured stamp is pressed on the substrate and forces the ink into a pattern. “The...

Im Focus: The Glowing Brain

A new Fraunhofer MEVIS method conveys medical interrelationships quickly and intuitively with innovative visualization technology

On the monitor, a brain spins slowly and can be examined from every angle. Suddenly, some sections start glowing, first on the side and then the entire back of...

Im Focus: Newly discovered material property may lead to high temp superconductivity

Researchers at the U.S. Department of Energy's (DOE) Ames Laboratory have discovered an unusual property of purple bronze that may point to new ways to achieve high temperature superconductivity.

While studying purple bronze, a molybdenum oxide, researchers discovered an unconventional charge density wave on its surface.

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

Partner countries of FAIR accelerator meet in Darmstadt and approve developments

11.07.2016 | Event News

 
Latest News

New study reveals where MH370 debris more likely to be found

27.07.2016 | Earth Sciences

Dirty to drinkable

27.07.2016 | Materials Sciences

Exploring one of the largest salt flats in the world

27.07.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>