Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New insight into Earth's crust, mantle and outer core interactions

05.06.2018

A new study by the University of Liverpool, in collaboration with the Universities of Lancaster and Oslo, sheds light on a longstanding question that has puzzled earth scientists.

Using previously unavailable data, researchers confirm a correlation between the movement of plate tectonics on the Earth's surface, the flow of mantle above the Earth's core and the rate of reversal of the Earth's magnetic field which has long been hypothesised.


Earth's crust, mantle and outer core interactions.

Credit: Kay Lancaster, University of Liverpool

In a paper published in the journal Tectonophysics, they suggest that it takes around 120-130 million years for slabs of ancient ocean floor to sink (subduct) from the Earth's surface to a sufficient depth in the mantle where they can cool the core, which in turn causes the liquid iron in the Earth's outer core to flow more vigorously and produce more reversals of the Earth's magnetic field.

This study is the first to demonstrate this correlation using records and proxies of global rates of subduction from various sources including a continuous global plate reconstruction model developed at the University of Sydney. These records were compared with a new compilation of magnetic field reversals whose occurrence is locked into volcanic and sedimentary rocks.

Liverpool palaeomagnetist, Professor Andy Biggin, said: "Until recently we did not have good enough records of how much global rates of subduction had changed over the last few hundreds of millions of years and so we had nothing to compare with the magnetic records.

"When we were able to compare them, we found that the two records of subduction and magnetic reversal rate do appear to be correlated after allowing for a time delay of 120-130 million years for the slabs of ocean floor to go from the surface to a sufficient depth in the mantle where they can cool the core.

"We do not know for sure that the correlation is causal but it does seem to fit with our understanding of how the crust, mantle and core should all be interacting and this value of 120-130 million could provide a really useful observational constraint on how quickly slabs of ancient sea floor can fall through the mantle and affect flow currents within it and in the underlying core."

The magnetic field is generated deep within the Earth in a fluid outer core of iron and other elements that creates electric currents, which in turn produces magnetic fields.

The core is surrounded by a nearly 3,000 km thick mantle which although made of solid rock, flows very slowly (mm per year). The mantle produces convection currents which are strongly linked to movement of the tectonic plates but also affect the core by varying the amount of heat that is transferred across the core-mantle boundary.

The Earth's magnetic field occasionally flips its polarity and the average length of time between such flips has changed dramatically through Earth's history. For example, today such magnetic reversals occur on average four times per million years but one hundred million years ago, the field essentially stayed in the same polarity for nearly 40 million years.

Professor Biggin heads up the University's Determining Earth Evolution from Palaeomagnetism (DEEP) research group which brings together research expertise across geophysics and geology to develop palaeomagnetism as a tool for understanding deep Earth processes occurring across timescales of millions to billions of years.

###

It is based in the University's world class Geomagnetism Laboratory and supported through the Leverhulme Trust and the Natural Environment Research Council.

The paper `Subduction flux modulates the geomagnetic polarity reversal rate' is published in Tectonphysics (doi: 10.1016/j.tecto.2018.05.018)

Media Contact

Sarah Stamper
sarah.stamper@liv.ac.uk
01-517-943-044

 @livuninews

http://www.liv.ac.uk 

Sarah Stamper | EurekAlert!
Further information:
http://dx.doi.org/10.1016/j.tecto.2018.05.018

More articles from Earth Sciences:

nachricht UAV aircrafts provide new insights into the formation of the smallest particles in Arctic
01.06.2018 | Leibniz Institute for Tropospheric Research (TROPOS)

nachricht Cold production of new seafloor
29.05.2018 | Helmholtz Centre for Ocean Research Kiel (GEOMAR)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

12th COMPAMED Spring Convention: Innovative manufacturing processes of modern implants

28.05.2018 | Event News

In focus: Climate adapted plants

25.05.2018 | Event News

 
Latest News

Cebit 2018: Saarbrücken Start-up combines Tinkering and Programming for Elementary School Kids

05.06.2018 | Science Education

Insects supply chitin as a raw material for the textile industry

05.06.2018 | Trade Fair News

Münster researchers have discovered a possible new treatment for regulating inflammation

05.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>