Can help determine vulnerability of national power grid
Measurements of the three-dimensional structure of the earth, as opposed to the one-dimensional models typically used, can help scientists more accurately determine which areas of the United States are most vulnerable to blackouts during hazardous geomagnetic storms.
Space weather events such as geomagnetic storms can disturb the earth's magnetic field, interfering with electric power grids, radio communication, GPS systems, satellite operations, oil and gas drilling and air travel. Scientists use models of the earth's structure and measurements of Earth's magnetic field taken at USGS observatories (https:/
In a new U.S. Geological Survey study/a>, scientists calculated voltages along power lines in the mid-Atlantic region of the U.S. using 3D data of the earth. These data, taken at Earth's surface, reflect the complex structure of the earth below the measurement sites and were collected during the National Science Foundation EarthScope USArray project. The scientists found that for many locations, the voltages they calculated were significantly different from those based on previous 1D calculations, with the 3D data producing the most precise results.
"Using the most accurate data available to determine vulnerable areas of the power grid can help maintain life-saving communications and protect national security during severe geomagnetic storms," said Greg Lucas, a USGS scientist and the lead author of the study. "Our study suggests that 3D data of the earth should be used whenever they are available."
Electric currents from a March 1989 geomagnetic storm caused a blackout in Quebec and numerous glitches in the U.S. power grid. In past studies, scientists using simple 1D models of the earth would have found that 16 high-voltage electrical transmission lines were disturbed in the mid-Atlantic region during the storm, resulting in the blackout. However, by using realistic 3D data to calculate the 1989 scenario, the new study found that there might have actually been 62 vulnerable lines.
"This discrepancy between 1D- and 3D-based calculations of the 1989 storm demonstrates the importance of realistic data, rather than relying on previous 1D models, to determine the impact that a geomagnetic storm has on power grids," Lucas said.
###
The new study is published in the journal Space Weather.
For more information about the effects of geomagnetic storms, please visit the USGS Geomagnetism Program website.
Marisa Lubeck | EurekAlert!
Further reports about: > 3D > USGS > geomagnetic storm > geomagnetic storms > magnetic field > power grid > storms
AWI researchers measure a record concentration of microplastic in arctic sea ice
24.04.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung
Climate change in a warmer-than-modern world: New findings of Kiel Researchers
24.04.2018 | Christian-Albrechts-Universität zu Kiel
At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.
Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...
Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.
Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...
University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.
Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.
Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.
Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...
Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.
The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...
Anzeige
Anzeige
Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"
13.04.2018 | Event News
Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018
12.04.2018 | Event News
IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur
09.04.2018 | Event News
The dispute about the origins of terahertz photoresponse in graphene results in a draw
25.04.2018 | Physics and Astronomy
Graphene origami as a mechanically tunable plasmonic structure for infrared detection
25.04.2018 | Materials Sciences
First form of therapy for childhood dementia CLN2 developed
25.04.2018 | Studies and Analyses