Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NAU Researcher Works to Understand Forces of Abrupt Climate Change

20.02.2015

By studying African lake sediments from the past 20,000 years, scientists are learning more about abrupt climate shifts, advancing their understanding of changing weather patterns.

In a recent paper published in Nature Geoscience, co-author on an NAU assistant professor Nicholas McKay analyzes core samples from Lake Bosumtwi in Ghana. The isolated lake was formed by a meteor and sits like a bowl on the landscape giving scientists a clear view of environmental changes.


Timothy Shanahan

Lake Bosumtwi in Ghana has 1 million years of sediments, aiding scientists' climate research.

The lake samples were obtained by drilling 1,000 feet to the lake's bottom and another 1,000 feet into the meteor impact structure. The sediments span 1-million years but the paper focused on the past 20,000 years.

McKay and co-authors describe how Africa changed from a humid environment to the more arid region of today. Earlier studies show the Sahara Desert and other north African regions shifted from lush to dry between 5,000 and 6,000 years ago. Analysis of Lake Bosumtwi reveals humid conditions remained until about 3,000 years ago, providing supportive habitats for humans, animals and plants.

“We saw a complex response in climate changes, not this uniform picture with all of Africa doing the same thing,” McKay said.

By analyzing isotopes from leaves in lake sediments, the researchers gained an understanding of monsoonal changes. In other parts of Africa, these changes are measured by blowing dust. “Rapidly, it went from no dust to lots of dust, instead of being a gradual transition from being wet to being dry. That is what we are working to understand,” added McKay, who said Africa’s complexities reveal clues to future climate change.

Although the large scale, north-to-south change was gradual, McKay and his team focused on areas where the change happened much quicker than expected. The researchers suggested the anomalies were created by the reactions of soil moisture and plants to the diminishing monsoon.

“The plants do a good job of reinforcing their own existence by making it a little moister and bringing more rain,” McKay said. “But if you cross the moisture threshold where the plants die, then it also stops raining and it sort of snowballs really fast and that is how you can get these really rapid changes,” McKay said.

While the paper focused on the Holocene geologic time period, the abrupt localized climate changes provide insights to existing weather models and could benefit analysis of present and future climate shifts.

Contact Information
Theresa Bierer
Public Affairs Coordinator
Theresa.Bierer@nau.edu
Phone: 928-523-9495
Mobile: 928-699-2824

Theresa Bierer | newswise
Further information:
http://www.nau.edu

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

MEMS chips get metatlenses

21.02.2018 | Physics and Astronomy

International team publishes roadmap to enhance radioresistance for space colonization

21.02.2018 | Physics and Astronomy

World's first solar fuels reactor for night passes test

21.02.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>