Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA spies Extra-Tropical Storm Kate racing through North Atlantic

13.11.2015

On November 12 at 4 a.m. EST the National Hurricane Center issued the last advisory on Extra-Tropical Cyclone Kate, located several hundred miles south-southeast of Cape Race, Newfoundland. NOAA's GOES-East satellite captured a visible light image of the storm.

A NOAA GOES-West satellite visible image extra-tropical storm Kate on Nov. 12 at 1445 UTC (9:45 a.m. EST) showed the storm over 400 miles southeast of Newfoundland, Canada. Most of the clouds associated with the post-tropical storm were north and east of the center. Forecaster Beven of the National Hurricane Center said, "Satellite imagery indicates that Kate has merged with a baroclinic zone over the north Atlantic and is now an extratropical cyclone."


This NOAA GOES-West satellite visible image extra-tropical storm Kate shows the storm over 400 miles southeast of Newfoundland, Canada.

Credits: NASA/NOAA GOES Project

Kate Reached Hurricane Strength

On Nov. 10, the RapidScat instrument that flies aboard the International Space Station saw Hurricane Kate north of the Bahamas and its strongest winds were north of the center. Maximum sustained winds in both areas were as strong as 30 meters per second (67 mph/108 kph). On Nov. 11, those winds increased to hurricane force. Hurricane force winds extended outward up to 35 miles (55 km) from the center and tropical storm force winds extend outward up to 205 miles (335 km).

At 10 a.m. EST (1500 UTC) on Nov. 11 the center of Hurricane Kate was located near latitude 36.8 North, longitude 60.5 West. That put Kate's center about 395 miles (635 km) northeast of Bermuda and about 780 miles (1,260 km) south-southwest of Cape Race Newfoundland.

An Infrared Look at Kate

On Nov. 12 at 05:17 UTC (12:17 a.m. EST) infrared imagery from the Atmospheric Infrared Sounder or AIRS instrument aboard NASA's Aqua satellite showed fragmented strong storms east and north of Kate's center where cold cloud top temperatures were near -63F/-53C. Storms with cloud tops that cold (and high in the troposphere) have been shown to generate heavy rain.

Aqua satellite showed fragmented strong storms east and north of Kate's center.

Kate Weakens and Becomes Extra-Tropical

At 4 a.m. EST on Nov. 12, Kate was classified as an extra-tropical storm. That means that a tropical cyclone has lost its "tropical" characteristics. The National Hurricane Center defines "extra-tropical" as a transition that implies both poleward displacement (meaning it moves toward the north or south pole) of the cyclone and the conversion of the cyclone's primary energy source from the release of latent heat of condensation to baroclinic (the temperature contrast between warm and cold air masses) processes. It is important to note that cyclones can become extratropical and still retain winds of hurricane or tropical storm force.

At 4 a.m. EST on Nov. 12, Kate's maximum sustained winds were near 60 knots (70 mph). Kate was centered near 40.7 degrees north latitude and 50.8 degrees west longitude, about 430 miles south-southeast of Cape Race, Newfoundland, Canada. Kate was moving to the east-northeast at 23 knots (26 mph). Minimum central pressure was 983 millibars. The post-tropical cyclone is expected to accelerate toward the east-northeast and northeast.

Kate's Fate

The National Hurricane Center expects extra-tropical storm Kate to continue weakening, but slowly over the next couple of days. The NHC forecast keeps maximum sustained winds near 45 knots (50 mph) through Nov. 15 and by Nov. 16, Kate is expected to become absorbed by an extra-tropical low pressure area.

Additional information on this system can be found in High Seas Forecasts issued by the National Weather Service at http://www.opc.ncep.noaa.gov/shtml/NFDHSFAT1.shtml.

Rob Gutro | EurekAlert!

More articles from Earth Sciences:

nachricht Monitoring lava lake levels in Congo volcano
16.05.2018 | Seismological Society of America

nachricht Ice stream draining Greenland Ice Sheet sensitive to changes over past 45,000 years
14.05.2018 | Oregon State University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>