Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA sees Tropical Cyclone Nathan crossing Cape York Peninsula

23.03.2015

Tropical Cyclone Nathan made landfall in eastern Queensland, Australia's Cape York Peninsula and was moving west across it when NASA's Aqua satellite passed overhead. The RapidScat instrument revealed that Nathan's strongest winds were south of the center before its landfall.

On March 19, from at 1:17 to 2:49 UTC, before landfall, the RapidScat instrument that flies aboard the International Space Station studied Nathan's winds. RapidScat data showed the strongest sustained winds reaching over 30 meters per second (108 kph/67 mph) were south of Cyclone Nathan's center. Winds in the other quadrants were not as strong.


The MODIS instrument aboard NASA's Aqua satellite captured this image of Tropical Cyclone Nathan (18P) over Cape York Peninsula, Australia on March 20 at 04:05 UTC.

Image Credit: NASA Goddard MODIS Rapid Response Team

Nathan made landfall on March 19 around 2200 UTC (6 p.m. EDT/March 20 at 4 a.m. local time Queensland) between Cape Flattery and Cape Melville on the Cape York Peninsula in northern Queensland.

The MODIS instrument aboard Aqua captured visible data on the storm that was used to create a picture of it at NASA's Goddard Space Flight Center in Greenbelt, Maryland. The image was taken at 4:05 UTC (12:05 a.m. EDT) on March 20 and shows Nathan's clouds cover all of the Cape York Peninsula with the exception of the far northern tip. Bands of thunderstorms spiraled into the center of circulation from the south, where RapidScat had previously seen the storm's strongest winds. An eye was no longer visible as the friction encountered from landfall weakened the storm.

... more about:
»ABM »Cyclone »Flight Center »Gulf »NASA »Space »Space Flight Center »UTC »knots

The Australian Bureau of Meteorology has issued warnings from Kowanyama to Aurukun, extending inland to Coen. A Tropical Cyclone Watch is in effect from Maningrida to Numbulwar.

At 0900 UTC (5 a.m. EDT), Tropical Cyclone Nathan's maximum sustained winds were near 75 knots (86 mph/138.9 kph). It was located near 14.5 south latitude and 143.2 east longitude, about 208 nautical miles (293.4 miles/385.2 km) northwest of Cairns, Australia. At that time, Nathan was moving to the west at 9 knots (10.2 mph/16.6 kph).

At 1200 UTC (8 a.m. EDT/10 p.m. local time Queensland), the Australian Bureau of Meteorology (ABM) noted that Nathan's maximum sustained winds were near 46.6 mph/ 75 kph. It had moved to 14.4 degrees south and 142.2 degrees east, about 75 miles/120 km west-southwest of Coen and 81 miles/130 kilometers north northeast of Kowanyama. Nathan was moving to the west at 9.7 knots (11.1 mph/18 kph).

The ABM expects Tropical Cyclone Nathan to emerge into the Gulf of Carpentaria early on Saturday morning (local time) and continue moving west while intensifying. For updated forecasts, watches and warnings, visit ABM's website: http://www.bom.gov.au/cyclone.

The Joint Typhoon Warning Center (JTWC) expects the storm to regenerate in the Gulf of Carpentaria, reaching up to 80 knots before making a second landfall late on March 21 (UTC) on the Gove Peninsula on the western side of the gulf. Nathan is then expected to pass along the coast of the Top End.

Rob Gutro | EurekAlert!

Further reports about: ABM Cyclone Flight Center Gulf NASA Space Space Flight Center UTC knots

More articles from Earth Sciences:

nachricht Sea ice extent sinks to record lows at both poles
23.03.2017 | NASA/Goddard Space Flight Center

nachricht Less radiation in inner Van Allen belt than previously believed
21.03.2017 | DOE/Los Alamos National Laboratory

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>