Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA sees Tropical Cyclone Nathan crossing Cape York Peninsula

23.03.2015

Tropical Cyclone Nathan made landfall in eastern Queensland, Australia's Cape York Peninsula and was moving west across it when NASA's Aqua satellite passed overhead. The RapidScat instrument revealed that Nathan's strongest winds were south of the center before its landfall.

On March 19, from at 1:17 to 2:49 UTC, before landfall, the RapidScat instrument that flies aboard the International Space Station studied Nathan's winds. RapidScat data showed the strongest sustained winds reaching over 30 meters per second (108 kph/67 mph) were south of Cyclone Nathan's center. Winds in the other quadrants were not as strong.


The MODIS instrument aboard NASA's Aqua satellite captured this image of Tropical Cyclone Nathan (18P) over Cape York Peninsula, Australia on March 20 at 04:05 UTC.

Image Credit: NASA Goddard MODIS Rapid Response Team

Nathan made landfall on March 19 around 2200 UTC (6 p.m. EDT/March 20 at 4 a.m. local time Queensland) between Cape Flattery and Cape Melville on the Cape York Peninsula in northern Queensland.

The MODIS instrument aboard Aqua captured visible data on the storm that was used to create a picture of it at NASA's Goddard Space Flight Center in Greenbelt, Maryland. The image was taken at 4:05 UTC (12:05 a.m. EDT) on March 20 and shows Nathan's clouds cover all of the Cape York Peninsula with the exception of the far northern tip. Bands of thunderstorms spiraled into the center of circulation from the south, where RapidScat had previously seen the storm's strongest winds. An eye was no longer visible as the friction encountered from landfall weakened the storm.

... more about:
»ABM »Cyclone »Flight Center »Gulf »NASA »Space »Space Flight Center »UTC »knots

The Australian Bureau of Meteorology has issued warnings from Kowanyama to Aurukun, extending inland to Coen. A Tropical Cyclone Watch is in effect from Maningrida to Numbulwar.

At 0900 UTC (5 a.m. EDT), Tropical Cyclone Nathan's maximum sustained winds were near 75 knots (86 mph/138.9 kph). It was located near 14.5 south latitude and 143.2 east longitude, about 208 nautical miles (293.4 miles/385.2 km) northwest of Cairns, Australia. At that time, Nathan was moving to the west at 9 knots (10.2 mph/16.6 kph).

At 1200 UTC (8 a.m. EDT/10 p.m. local time Queensland), the Australian Bureau of Meteorology (ABM) noted that Nathan's maximum sustained winds were near 46.6 mph/ 75 kph. It had moved to 14.4 degrees south and 142.2 degrees east, about 75 miles/120 km west-southwest of Coen and 81 miles/130 kilometers north northeast of Kowanyama. Nathan was moving to the west at 9.7 knots (11.1 mph/18 kph).

The ABM expects Tropical Cyclone Nathan to emerge into the Gulf of Carpentaria early on Saturday morning (local time) and continue moving west while intensifying. For updated forecasts, watches and warnings, visit ABM's website: http://www.bom.gov.au/cyclone.

The Joint Typhoon Warning Center (JTWC) expects the storm to regenerate in the Gulf of Carpentaria, reaching up to 80 knots before making a second landfall late on March 21 (UTC) on the Gove Peninsula on the western side of the gulf. Nathan is then expected to pass along the coast of the Top End.

Rob Gutro | EurekAlert!

Further reports about: ABM Cyclone Flight Center Gulf NASA Space Space Flight Center UTC knots

More articles from Earth Sciences:

nachricht NASA eyes Pineapple Express soaking California
24.02.2017 | NASA/Goddard Space Flight Center

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>