Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA sees powerful storms within Tropical Cyclone Ashobaa

11.06.2015

Two NASA satellites provided a look inside and outside of Tropical Cyclone Ashobaa. NASA and JAXA's GPM satellite observed rainfall rates and cloud heights identifying powerful thunderstorms within the cyclone, and NASA's Aqua satellite provided an overall look at Ashobaa's cloud extent.

The Global Precipitation Measurement (GPM) core observatory had an excellent view of Tropical Cyclone Ashobaa in the Arabian Sea over on June 8, 2015 at 2131 UTC (5:31 p.m. EDT). As expected, Tropical Cyclone Ashobaa was more powerful than when seen by GPM earlier in the day.


On June 8, GPM showed that rain was falling in Ashobaa at a rate of over 70.5 mm (about 2.8 inches) per hour (red) in bands of storms west of the center of circulation.

Credits: NASA/JAXA/SSAI, Hal Pierce

GPM's Microwave Imager (GMI) and Dual-Frequency Precipitation Radar (DPR) instruments showed that rain was falling at a rate of over 70.5 mm (about 2.8 inches) per hour in bands of storms west of the center of circulation.

Very powerful storms were seen west of tropical cyclone ASHOBAA's center of circulation by GPM's Ku Band Radar. A 3-D view constructed from GPM's Ku band radar data shows that Tropical Cyclone Ashobaa had some extremely tall storms. GPM radar data indicated that some of these very intense storms were reaching the amazing height of 21 km (13 miles).

On June 10 at 09:00 UTC (5 a.m. EDT), the Moderate Resolution Imaging Spectroradiometer or MODIS instrument aboard NASA's Aqua satellite captured a visible image of Tropical Cyclone Ashobaa off the coast of Oman.

There was no visible eye in the system, although it appears to be strengthening. Bands of thunderstorms were spiraling into the low-level center from the west and east. The MODIS image showed that the northwestern quadrant of the tropical storm was already sweeping over eastern Oman.

The Joint Typhoon Warning Center (JTWC) noted that "Animated multispectral satellite imagery depicts tight spiral banding wrapping beneath a central dense overcast feature that is elongated to the west due to moderate (15-20 knot) easterly vertical wind shear that will persist throughout the forecast period." Microwave imagery shows disorganized convection along the western edge of the storm, while an eye feature can be seen in microwave data.

By 1500 UTC (11 a.m. EDT), Ashobaa's maximum sustained winds had increased to 55 knots (63.9 mph/ 101.9 kph). Ashobaa was centered near 20.9 North latitude and 61.0 east longitude, about 138 nautical miles (158.8 miles/255.6 km) east-northeast of Masirah Island, Oman. The tropical storm is slowly moving west at 3 knots (3.4 mph/5.5 kph).

The JTWC now expects that Ashobaa will not reach hurricane-strength before making landfall early on June 12 and will weaken quickly thereafter between the interaction with land and dry air that is forecast to move into the circulation.

Rob Gutro | EurekAlert!

More articles from Earth Sciences:

nachricht Predicting eruptions using satellites and math
28.06.2017 | Frontiers

nachricht NASA sees quick development of Hurricane Dora
27.06.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>