Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA satellite reveals how much Saharan dust feeds Amazon's plants

25.02.2015

What connects Earth's largest, hottest desert to its largest tropical rain forest?

The Sahara Desert is a near-uninterrupted brown band of sand and scrub across the northern third of Africa. The Amazon rain forest is a dense green mass of humid jungle that covers northeast South America. But after strong winds sweep across the Sahara, a tan cloud rises in the air, stretches between the continents, and ties together the desert and the jungle. It's dust. And lots of it.


For the first time, a NASA satellite has quantified in three dimensions how much dust makes the trans-Atlantic journey from the Sahara Desert the Amazon rain forest. Among this dust is phosphorus, an essential nutrient that acts like a fertilizer, which the Amazon depends on in order to flourish.

Credit: NASA's Goddard Space Flight Center

For the first time, a NASA satellite has quantified in three dimensions how much dust makes this trans-Atlantic journey. Scientists have not only measured the volume of dust, they have also calculated how much phosphorus - remnant in Saharan sands from part of the desert's past as a lake bed - gets carried across the ocean from one of the planet's most desolate places to one of its most fertile.

A new paper published Feb. 24 in Geophysical Research Letters, a journal of the American Geophysical Union, provides the first satellite-based estimate of this phosphorus transport over multiple years, said lead author Hongbin Yu, an atmospheric scientist at the University of Maryland who works at NASA's Goddard Space Flight Center in Greenbelt, Maryland. A paper published online by Yu and colleagues Jan. 8 in Remote Sensing of the Environment provided the first multi-year satellite estimate of overall dust transport from the Sahara to the Amazon.

This trans-continental journey of dust is important because of what is in the dust, Yu said. Specifically the dust picked up from the Bodélé Depression in Chad, an ancient lake bed where rock minerals composed of dead microorganisms are loaded with phosphorus. Phosphorus is an essential nutrient for plant proteins and growth, which the Amazon rain forest depends on in order to flourish.

Nutrients - the same ones found in commercial fertilizers - are in short supply in Amazonian soils. Instead they are locked up in the plants themselves. Fallen, decomposing leaves and organic matter provide the majority of nutrients, which are rapidly absorbed by plants and trees after entering the soil. But some nutrients, including phosphorus, are washed away by rainfall into streams and rivers, draining from the Amazon basin like a slowly leaking bathtub.

The phosphorus that reaches Amazon soils from Saharan dust, an estimated 22,000 tons per year, is about the same amount as that lost from rain and flooding, Yu said. The finding is part of a bigger research effort to understand the role of dust and aerosols in the environment and on local and global climate.

Dust in the Wind

"We know that dust is very important in many ways. It is an essential component of the Earth system. Dust will affect climate and, at the same time, climate change will affect dust," said Yu. To understand what those effects may be, "First we have to try to answer two basic questions. How much dust is transported? And what is the relationship between the amount of dust transport and climate indicators?"

The new dust transport estimates were derived from data collected by a lidar instrument on NASA's Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation, or CALIPSO, satellite from 2007 though 2013.

The data show that wind and weather pick up on average 182 million tons of dust each year and carry it past the western edge of the Sahara at longitude 15W. This volume is the equivalent of 689,290 semi trucks filled with dust. The dust then travels 1,600 miles across the Atlantic Ocean, though some drops to the surface or is flushed from the sky by rain. Near the eastern coast of South America, at longitude 35W, 132 million tons remain in the air, and 27.7 million tons - enough to fill 104,908 semi trucks - fall to the surface over the Amazon basin. About 43 million tons of dust travel farther to settle out over the Caribbean Sea, past longitude 75W.

Yu and colleagues focused on the Saharan dust transport across the Atlantic Ocean to South America and then beyond to the Caribbean Sea because it is the largest transport of dust on the planet.

Dust collected from the Bodélé Depression and from ground stations on Barbados and in Miami give scientists an estimate of the proportion of phosphorus in Saharan dust. This estimate is used to calculate how much phosphorus gets deposited in the Amazon basin from this dust transport.

The seven-year data record, while too short for looking at long-term trends, is nevertheless very important for understanding how dust and other aerosols behave as they move across the ocean, said Chip Trepte, project scientist for CALIPSO at NASA's Langley Research Center in Virginia, who was not involved in either study.

"We need a record of measurements to understand whether or not there is a fairly robust, fairly consistent pattern to this aerosol transport," he said.

Looking at the data year by year shows that that pattern is actually highly variable. There was an 86 percent change between the highest amount of dust transported in 2007 and the lowest in 2011, Yu said.

Why so much variation? Scientists believe it has to do with the conditions in the Sahel, the long strip of semi-arid land on the southern border of the Sahara. After comparing the changes in dust transport to a variety of climate factors, the one Yu and his colleagues found a correlation to was the previous year's Sahel rainfall. When Sahel rainfall increased, the next year's dust transport was lower.

The mechanism behind the correlation is unknown, Yu said. One possibility is that increased rainfall means more vegetation and less soil exposed to wind erosion in the Sahel. A second, more likely explanation is that the amount of rainfall is related to the circulation of winds, which are what ultimately sweep dust from both the Sahel and Sahara into the upper atmosphere where it can survive the long journey across the ocean.

CALIPSO collects "curtains" of data that show valuable information about the altitude of dust layers in the atmosphere. Knowing the height at which dust travels is important for understanding, and eventually using computers to model, where that dust will go and how the dust will interact with Earth's heat balance and clouds, now and in future climate scenarios.

"Wind currents are different at different altitudes," said Trepte. "This is a step forward in providing the understanding of what dust transport looks like in three dimensions, and then comparing with these models that are being used for climate studies."

Climate studies range in scope from global to regional changes, such as those that may occur in the Amazon in coming years. In addition to dust, the Amazon is home to many other types of aerosols like smoke from fires and biological particles, such as bacteria, fungi, pollen, and spores released by the plants themselves. In the future, Yu and his colleagues plan to explore the effects of those aerosols on local clouds - and how they are influenced by dust from Africa.

"This is a small world," Yu said, "and we're all connected together."

Ellen Gray | EurekAlert!

Further reports about: Amazon Amazon basin Flight Center NASA NASA satellite Sahara Saharan Saharan dust Sahel phosphorus rainfall satellite

More articles from Earth Sciences:

nachricht Modeling magma to find copper
13.01.2017 | Université de Genève

nachricht What makes erionite carcinogenic?
13.01.2017 | Friedrich-Schiller-Universität Jena

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>