Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA's TRMM and GPM Satellites Analyze Hurricane Vance Before Landfall

06.11.2014

Hurricane Vance was a hurricane on Nov. 4 when the Tropical Rainfall Measuring Mission or TRMM satellite and the Global Precipitation Measurement (GPM) mission satellite passed overhead and measured its rainfall from space. TRMM and GPM revealed areas of heavy rain within the storm before it weakened to a depression and made landfall on Nov. 5.

The TRMM satellite flew over hurricane Vance on Nov. 4 at 0953 UTC (4:53 a.m. EST). Rainfall derived from TRMM's Microwave Imager (TMI) data collected were overlaid on a 1000 UTC (5 a.m. EST) image from NOAA's GOES-West satellite showing cloud cover and extent. The image analysis showed that Vance had a large area of heavy rainfall near the center of the hurricane. Some intense storms in that area were dropping rain at a rate of over 50mm (2 inches) per hour.


NASA/JAXA's GPM satellite data showed vertical structure of precipitation in Hurricane Vance on Nov. 3, at 0031 UTC (close to peak power) and Nov. 4 at 1101 UTC (weaker).

Image Credit: NASA/JAXA/SSAI, Hal Pierce

Vance's power peaked late on November 3, 2014 with winds of about 95 knots (about 109 mph). Vertical wind shear had started to weaken the hurricane, but Vance was still a powerful category two hurricane on the Saffir-Simpson scale with sustained wind speeds of about 90 knots (about 104 mph).

GPM, the successor to the TRMM satellite had two excellent views of Hurricane Vance on both November 3 at 0031 UTC and on Nov. 4 at 1101 UTC. GPM's Radar (Ku band), that is similar to that used on the TRMM’s satellite, was used to show vertical structure of precipitation at both times. In the first view hurricane Vance was at close to peak power with a well-defined eye. On Nov. 4, the weakening hurricane had a closing eye with much lower thunderstorm tops.

Tropical Depression Vance Makes Landfall

Increasing vertical wind shear weakened Vance from a hurricane to a depression by Nov. 5. In fact, wind shear had increased so much it was blowing at over 50 knots early in the day.

Vance made landfall in western Mexico around 10 a.m. EST today, Nov. 5. At that time, an automated weather station located in the northern part of the state of Nayarit, Mexico, reported a wind gust of 52 mph (84 kph).

On Wednesday, Nov. 5 at 10 a.m. EST (7 a.m. PST/1500 UTC) the center of Tropical Depression Vance was located near latitude 22.7 north and longitude 105.7 west about 55 miles (90 km) southeast of Mazatlan, Mexico. The depression was moving toward the northeast near 13 mph (20 kph) and is expected to continue in that direction taking Vance farther inland. The estimated minimum central pressure is 1005 millibars. Maximum sustained winds had decreased to near 30 mph (45 kph) and Vance is expected to dissipate later today or tonight.

Vance may be dissipating, but the moisture associated with the depression will continue to bring heavy rainfall southeast of its center and across portions of central and northern Mexico and the south-central United States. The ocean swells creating dangerous conditions and rip currents affecting parts of the southwestern Mexico and Baja California Sur coastlines are expected to diminish late on Nov. 5.

Forecaster Cangialosi at NOAA's National Hurricane Center (NHC) noted that by 10 a.m. EST on Nov. Vance's low-level center was becoming elongated, so the cyclone barely met the qualifications for a tropical cyclone.

The moisture that TRMM and GPM saw when Vance was a hurricane will continue to generate heavy rainfall. Even though the tropical cyclone is forecast to dissipate soon, the NHC discussion stated that moisture from the remnants of Vance and the area to its southeast should continue to spread northeastward across Mexico and into the south-central United States. This is producing heavy rains over portions of these areas, which should continue for another day or two.

Rob Gutro/Hal Pierce
SSAI/NASA's Goddard Space Flight Center

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov/content/goddard/21e-eastern-pacific/

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>