Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA's triple examination of Typhoon Dolphin

20.05.2015

Three different platforms have been examining Typhoon Dolphin as it moves through the Northwestern Pacific Ocean.

The RapidScat instrument saw Dolphin's winds intensify over May 16 and 17, the Global Precipitation Measurement or GPM core observatory estimated the drenching rainfall Dolphin dropped over Guam and Rota, and the MODIS instrument aboard NASA's Terra satellite provided a look at the storm's structure as it was passing just west of Iwo To (island), Japan on May 19. Dolphin had weakened to a tropical storm mid-day on May 19 and is becoming extra-tropical.


NASA's Terra satellite captured this visible image of Typhoon Dolphin on May 19 at 01:30 UTC near Iwo To island, Japan.

Credits: NASA Goddard MODIS Rapid Response

Typhoon Dolphin battered and drenched the islands of Guam and Rota as it passed over the channel between them on Saturday, May 16.

A rainfall analysis computed from data generated by the Integrated Multi-satellite Retrievals for GPM (IMERG). This analysis showed the total rainfall computed from May 11, 2015 to May 18, 2015 when Typhoon Dolphin was moving through the Marianas. "The heaviest rainfall estimates near Guam and Rota were found to be over 240 mm (almost 10 inches) in channel between the two islands," said Hal Pierce who created the graphic at NASA's Goddard Space Flight Center in Greenbelt, Maryland.

Rota not only received the strongest winds, because of the island was in the right front quadrant of the typhoon but, according to this analysis, also received significantly more rainfall than Guam.

Luckily for Guam, Dolphin's most powerful winds occurred after passing to the northwest of Guam. Those intensifying winds were seen by the RapidScat instrument that flies aboard the International Space Station.

RapidScat obtained two views of Dolphin's surface winds, two days apart. One view of Dolphin occurred at 5 p.m. GMT on Saturday, May 16, and the other at 3:45 p.m. GMT on May 17. "These are almost exactly 48 hours apart and are almost at the same longitude, in agreement with Dolphin having been heading mostly north from Guam to Iwo," said Doug Tyler of NASA's Jet Propulsion Laboratory in Pasadena, California, where the data was converted into imagery. "The most impressive part is how much strength Dolphin gained in 48 hours."

In the RapidScat data from May 16, strongest winds appeared south and east of the center of circulation. Sustained wind speeds were near 35 meters per second (78.2 mph/126 kph). By the May 18 overpass, maximum sustained winds exceeded 45 meters per second (100.7 mph/162 kph) in the northern and eastern quadrants of the storm.

By May 16, 2015 Dolphin had winds estimated at 140 knots (161 mph) making it a category five super typhoon on the Saffir-Simpson hurricane wind scale. That strength didn't last long as the system began interacting with mid-latitude westerly winds.

On May 18 at 09:16 UTC (5:16 a.m. EDT), the GPM core observatory satellite flew above the weakening typhoon when winds had dropped to less than 100 knots (115 mph). GPM's Microwave Imager (GMI) found that Dolphin was dropping rain over the open waters of the Pacific Ocean at a rate of over 65 mm (2.6 inches) per hour.

The MODIS instrument aboard NASA's Terra satellite captured a visible image of Typhoon Dolphin on May 19 at 01:30 UTC (May 18 at 9:30 p.m. EDT) when it was nearing Iwo To island, Japan. Dolphin still maintained a spiral structure with bands of thunderstorms wrapping into the low-level center of circulation. There was no eye visible in the MODIS image, however, as the storm continued to weaken.

At 1500 UTC (11 a.m. EDT), Dolphin's winds dropped to 60 knots (69 mph/1111 kph). It was centered near 26.7 north latitude and 141.9 east longitude, just 68 nautical miles (78 miles/126 km) north-northwest of Iwo To. Dolphin was moving to the northeast at 14 knots (16 mph/26 kph).

Forecasters at the Joint Typhoon Warning Center (JTWC) noted that "animated enhanced infrared satellite imagery continues to show thinning convection as the system is undergoing extra-tropical transition. The system is rapidly merging with a baroclinic zone and will complete extra-tropical transitioning within 12 hours (by 11 p.m. EDT).

The National Oceanic and Atmospheric Administration defines a baroclinic zone as a region in which a temperature gradient exists on a constant pressure surface. Baroclinic zones are favored areas for strengthening and weakening systems; barotropic systems, on the other hand, do not exhibit significant changes in intensity. Also, wind shear is characteristic of a baroclinic zone.

The JTWC noted that it will not issue any later bulletins on Dolphin. Extra-tropical storm Dolphin is expected to move on a northeasterly track over open waters of the Northwestern Pacific Ocean where it is expected to dissipate.

Rob Gutro | EurekAlert!

More articles from Earth Sciences:

nachricht NASA examines newly formed Tropical Depression 3W in 3-D
26.04.2017 | NASA/Goddard Space Flight Center

nachricht Early organic carbon got deep burial in mantle
25.04.2017 | Rice University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>