Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA's GPM satellite sees heavy rainfall in new Tropical Depression 8E

29.07.2015

The eighth tropical depression of the Eastern Pacific Ocean hurricane season formed far from land as the Global Precipitation Measurement (GPM) core satellite passed overhead and measured rainfall and cloud heights.

The GPM core observatory satellite is co-managed by both NASA and the Japan Aerospace Exploration Agency. GPM flew over Tropical Depression 08E (TD08E) when it was forming on July 27, 2015 at 1931 UTC (3:31 p.m. PDT). GPM's Microwave Imager (GMI) and Dual-Frequency Precipitation Radar (DPR) measured rain falling at a rate of 50 mm (almost 2 inches) per hour in storms near the center of tropical depression.


On July 27 at 12:31 p.m. PDT, GPM's instruments measured rain falling at a rate of 50 mm (almost 2 inches) per hour (in red) in storms near the center of the tropical depression.

Credit: NASA/JAXA/SSAI, Hal Pierce

GPM's DPR instrument scan viewed an area east of the center of the developing tropical depression. A simulated 3-D view of storm tops measured by Ku Band radar had reached heights above 14.2 km (8.8 miles). By 5 p.m. EDT, the National Hurricane Center announced that Tropical Depression 8E formed near 15.6 North latitude and 126.1 West longitude.

Twelve hours later at 5 a.m. EDT (0900 UTC) on July 28, the center of Tropical Depression Eight-E was located near latitude 16.2 North, longitude 128.0 West. That puts the center about 1,265 miles (2,035 km) west-southwest of the southern tip of Baja California, Mexico.

The depression was moving toward the west-northwest near 13 mph and is expected to turn west later in the day. Maximum sustained winds were near 35 mph (55 kph) and the depression could become a tropical storm later in the day. The estimated minimum central pressure is 1007 millibars.

National Hurricane Center (NHC) forecaster Cangialosi noted that "The depression is currently experiencing about 15 knots (15.8 mph/27.7 kph) of north-northwesterly shear, which is the reason why most of the thunderstorms are located to the south of the center."

By July 30, TD08E is expected to move into a more stable air mass and over slightly cooler water, which will prevent the storm from further development.

Rob Gutro | EurekAlert!

More articles from Earth Sciences:

nachricht Multi-year submarine-canyon study challenges textbook theories about turbidity currents
12.12.2017 | Monterey Bay Aquarium Research Institute

nachricht How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas
11.12.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Gecko adhesion technology moves closer to industrial uses

13.12.2017 | Information Technology

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure

13.12.2017 | Physics and Astronomy

Research reveals how diabetes in pregnancy affects baby's heart

13.12.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>