Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA examines Tropical Storm Nanmadol inside and out

04.07.2017

Two NASA satellites provided a look at the Northwestern Pacific Ocean's latest tropical storm from outside and inside. NASA-NOAA's Suomi NPP satellite provided an outside look at Nanmadol when it's maximum sustained winds peaked, and the GPM Core satellite provided an inside look at the rainfall within the storm.

Before consolidating into the fifth depression of the Northwestern Pacific Ocean's hurricane season, Nanmadol was a low pressure system designated System 99W. That low pressure area developed and was renamed Nanmadol on July 2.


On July 2, NASA/JAXA's GPM Core satellite passed over Nanmadol and found rain was falling at a rate of greater that 184 mm (7.2 inches) per in powerful storms northeast of the storm. GPM found that storm top heights near the center of circulation were reaching altitudes of over 14.4 km (8.9 miles). The tallest storms were seen by GPM in a large feeder band to the southeast of the storm's center where storm top heights were reaching altitudes of over 16.4km (10.2 miles).

Credits: NASA/JAXA, Hal Pierce

The name comes from an archaeological site adjacent to the eastern shore of the island of Pohnpei, one of the four states in the Federated States of Micronesia. The word means "spaces between" and is a reference to the canals that run through the ruins.

The GPM or Global Precipitation Measurement Mission core observatory satellite flew above tropical storm Nanmadol on July 2, 2017 at 2306 UTC (7:36 p.m EDT). The intensifying tropical storm was located just northeast of Taiwan and had maximum winds estimated at 45 knots (51.8 mph).

The GPM Core Observatory carries the first space-borne Ku/Ka-band Dual-frequency Precipitation Radar (DPR) and a multi-channel GPM Microwave Imager (GMI). Rainfall within Nanamadol was derived from data collected by GPM's GMI and DPR instruments. Those data indicated that rain was falling at a rate of greater that 184 mm (7.2 inches) per in powerful storms northeast of the storm.

At NASA's Goddard Space Flight Center in Greenbelt, Maryland GPM's Radar (DPR Ku band) enabled a 3-D examination of tropical storm Nanmadol's precipitation anatomy. Those data showed that an eye like structure was present at the intensifying tropical storm's center of circulation.

DPR found that storm top heights near the center of circulation were reaching altitudes of over 14.4 km (8.9 miles). The tallest storms were seen by GPM in a large feeder band to the southeast of the storm's center where storm top heights were reaching altitudes of over 16.4 km (10.2 miles).

At 05:12 UTC (1:12 a.m. EDT) on July 3, the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument aboard NASA-NOAA's Suomi NPP satellite provided a visible-light image of Tropical Storm Nanmadol. The VIIRS imagery showed a tightly wound tropical storm, with bands of thunderstorms wrapping into the low level center from the northwest and southeast. Infrared imagery showed that Nanmadol had briefly developed a pinhole eye.

At 1500 UTC (10 a.m. EDT) on July 3, Nanmadol's winds had peaked at 60 knots (69 mph/111 kph). Tropical-storm-force winds extended out to 60 nautical miles (69 miles/111 km) from the center making the small storm about 120 nautical miles (138 miles/222 km) in diameter.

It was located near 30.3 degrees north latitude and 127.1 degrees east longitude, about 284 nautical miles (327 miles/526 km) southwest of Sasebo, Japan. Nanmadol was moving to the north-northeast at 20 knots (23 mph/37 kph).

The JTWC noted that Nanmadol is expected to weaken as it approaches the western coast of Kyushu, Japan and tracks over cooler sea surface temperatures. The sea surface temperatures are cooler than the 26.6 degrees Celsius or 80 degrees Fahrenheit needed to maintain a tropical cyclone.

By July 4 at 0200 UTC (July 3 at 10 p.m. EDT), Nanmadol is expected to weaken further as it begins to interact with the rough terrain of Kyushu. The storm is then expected to move east-northeast across Kyushu, Shikoku and Honshu while becoming extra-tropical.

###

By Rob Gutro / Hal Pierce NASA's Goddard Space Flight Center

Rob Gutro | EurekAlert!
Further information:
https://www.eurekalert.org/multimedia/pub/144689.php

More articles from Earth Sciences:

nachricht By saving cost and energy, the lighting revolution may increase light pollution
23.11.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

nachricht Frictional Heat Powers Hydrothermal Activity on Enceladus
23.11.2017 | Universität Heidelberg

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>