Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA examines Tropical Storm Nanmadol inside and out

04.07.2017

Two NASA satellites provided a look at the Northwestern Pacific Ocean's latest tropical storm from outside and inside. NASA-NOAA's Suomi NPP satellite provided an outside look at Nanmadol when it's maximum sustained winds peaked, and the GPM Core satellite provided an inside look at the rainfall within the storm.

Before consolidating into the fifth depression of the Northwestern Pacific Ocean's hurricane season, Nanmadol was a low pressure system designated System 99W. That low pressure area developed and was renamed Nanmadol on July 2.


On July 2, NASA/JAXA's GPM Core satellite passed over Nanmadol and found rain was falling at a rate of greater that 184 mm (7.2 inches) per in powerful storms northeast of the storm. GPM found that storm top heights near the center of circulation were reaching altitudes of over 14.4 km (8.9 miles). The tallest storms were seen by GPM in a large feeder band to the southeast of the storm's center where storm top heights were reaching altitudes of over 16.4km (10.2 miles).

Credits: NASA/JAXA, Hal Pierce

The name comes from an archaeological site adjacent to the eastern shore of the island of Pohnpei, one of the four states in the Federated States of Micronesia. The word means "spaces between" and is a reference to the canals that run through the ruins.

The GPM or Global Precipitation Measurement Mission core observatory satellite flew above tropical storm Nanmadol on July 2, 2017 at 2306 UTC (7:36 p.m EDT). The intensifying tropical storm was located just northeast of Taiwan and had maximum winds estimated at 45 knots (51.8 mph).

The GPM Core Observatory carries the first space-borne Ku/Ka-band Dual-frequency Precipitation Radar (DPR) and a multi-channel GPM Microwave Imager (GMI). Rainfall within Nanamadol was derived from data collected by GPM's GMI and DPR instruments. Those data indicated that rain was falling at a rate of greater that 184 mm (7.2 inches) per in powerful storms northeast of the storm.

At NASA's Goddard Space Flight Center in Greenbelt, Maryland GPM's Radar (DPR Ku band) enabled a 3-D examination of tropical storm Nanmadol's precipitation anatomy. Those data showed that an eye like structure was present at the intensifying tropical storm's center of circulation.

DPR found that storm top heights near the center of circulation were reaching altitudes of over 14.4 km (8.9 miles). The tallest storms were seen by GPM in a large feeder band to the southeast of the storm's center where storm top heights were reaching altitudes of over 16.4 km (10.2 miles).

At 05:12 UTC (1:12 a.m. EDT) on July 3, the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument aboard NASA-NOAA's Suomi NPP satellite provided a visible-light image of Tropical Storm Nanmadol. The VIIRS imagery showed a tightly wound tropical storm, with bands of thunderstorms wrapping into the low level center from the northwest and southeast. Infrared imagery showed that Nanmadol had briefly developed a pinhole eye.

At 1500 UTC (10 a.m. EDT) on July 3, Nanmadol's winds had peaked at 60 knots (69 mph/111 kph). Tropical-storm-force winds extended out to 60 nautical miles (69 miles/111 km) from the center making the small storm about 120 nautical miles (138 miles/222 km) in diameter.

It was located near 30.3 degrees north latitude and 127.1 degrees east longitude, about 284 nautical miles (327 miles/526 km) southwest of Sasebo, Japan. Nanmadol was moving to the north-northeast at 20 knots (23 mph/37 kph).

The JTWC noted that Nanmadol is expected to weaken as it approaches the western coast of Kyushu, Japan and tracks over cooler sea surface temperatures. The sea surface temperatures are cooler than the 26.6 degrees Celsius or 80 degrees Fahrenheit needed to maintain a tropical cyclone.

By July 4 at 0200 UTC (July 3 at 10 p.m. EDT), Nanmadol is expected to weaken further as it begins to interact with the rough terrain of Kyushu. The storm is then expected to move east-northeast across Kyushu, Shikoku and Honshu while becoming extra-tropical.

###

By Rob Gutro / Hal Pierce NASA's Goddard Space Flight Center

Rob Gutro | EurekAlert!
Further information:
https://www.eurekalert.org/multimedia/pub/144689.php

More articles from Earth Sciences:

nachricht PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target
22.05.2018 | Mercator Research Institute on Global Commons and Climate Change (MCC) gGmbH

nachricht Monitoring lava lake levels in Congo volcano
16.05.2018 | Seismological Society of America

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>