Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

More ice in a warming world

16.12.2014

Antarctic sea-ice coverage has increased over the past few decades. A new study explains why this is the case, why models do not capture the increase and what humans might have to do with the expanding ice cover.

In September 2014, Antarctic sea ice covered more than 20 million square kilometers for the first time since the beginning of continuous satellite measurements in 1979. This maximum extent continues an overall increase of Antarctic sea ice that has puzzled scientists and the general public alike, in particular given the ongoing overall warming of our planet that simultaneously causes Arctic sea ice to retreat rapidly.


Cold southerly winds push sea ice away from the Antarctic coast, leading to new ice formation in the open water (polynya) along the coast. Satellite image by Terra-MODIS on October 23, 2001

Jacques Descloitres, MODIS Land Rapid Response Team, NASA/GSFC


Decadal trends of annual mean sea-ice concentration (shading) and drift (vectors) derived from satellite images.

Haumann et al., 2014, Geophys. Res. Lett

In a new study published this week in Geophysical Research Letters, scientists from the Max Planck Institute for Meteorology (MPI-M) in Germany explain the underlying cause of the long-term Antarctic sea-ice increase and analyze why climate models fail to reproduce it. „There is primarily one thing you need to get right if you want to model Antarctic sea ice: The wind pattern“, explains Alexander Haumann, lead author of the new study.

„We are primarily talking about regions with winter-time temperatures far below freezing here, and even with the ongoing warming, there is still a lot of ice growth in the ocean around Antarctica. Forced by strong winds, this sea ice is sometimes transported over more than a thousand kilometers. So if you want to know where it goes and which area it covers, you need to understand how it's being pushed around by the winds. “

And these winds have changed over the past decades. „We see a stronger off-shore component of wind patterns in particular in the Ross Sea, which is the sector of Antarctica that opens towards the Pacific. There, the winds have changed such that they blow the ice further away from the coast where new ice continuously forms“, explains Haumann's colleague Dirk Notz who leads the Sea-ice research group at MPI-M. While this was suspected also by earlier studies, the new study now shows this relationship to play the main role in ice coverage until today. „Where the winds blow more strongly away from the Antarctic continent, the ice cover increases because the ice is further blown to the north and the ocean refreezes in the south. It's as simple as that. “

Two questions then of course remain: Why have the winds changed? And why do models not capture these changes? The new study addresses both these questions. „The changing wind patterns are caused by lower surface pressure in some areas around Antarctica. In our model simulations, we get such lower surface pressure if we include both the effect of the ozone hole and the increase in greenhouse gas concentration. The ozone hole cools the high atmosphere over Antarctica, while the greenhouse gases warm the lower atmosphere. In combination, this can explain a change of the wind pattern, but we’re not sure yet whether this is also the main driver of the changes in the real world.“, says Hauke Schmidt, who leads the Middle and Upper Atmosphere research group at MPI-M.

But even though the model simulates a lowering of the surface pressure, it does not get the ice increase. Also this the scientists now understand: They suspect that the model does not capture the influence of the smaller scale topography around the continent and surface processes over ice and snow accurately enough. These processes influence the surface-pressure distribution and hence the direction of the wind. “In our model, the pressure changes such that the wind primarily blows stronger parallel to the coast line rather than away from it. Once this is better represented in the model, we should get better simulations of the sea-ice trend”, concludes Haumann.

So the scientists have understood why the sea ice increases and why their model does not capture it. Now they work on improving the atmospheric circulation around the continent, trusting that this will eventually allow them to reproduce the observed sea-ice increase in their model. Then the puzzle of Antarctic sea ice would fully be solved.

Original Publication
Haumann, F.A., D. Notz, and H. Schmidt (2014), Anthropogenic influence on recent circulation-driven Antarctic sea-ice changes, Geophys. Res. Lett., doi: 10.1002/2014GL061659

Contact:

Dr. Alexander Haumann,
now at ETH Zurich,
Phone: +41 44 6325786
Email: alexander.haumann@usys.ethz.ch,

Dr. Dirk Notz
Max Planck Institute for Meteorology
Phone: +49 (0) 40 41173 163
Email: dirk.notz@mpimet.mpg.de

Dr. Hauke Schmidt
Max Planck Institute for Meteorology
Phone: +49 (0) 40 41173 405
Email: hauke.schmidt@mpimet.mpg.de

Dr. Annette Kirk | Max-Planck-Institut für Meteorologie
Further information:
http://www.mpimet.mpg.de

More articles from Earth Sciences:

nachricht Sediment from Himalayas may have made 2004 Indian Ocean earthquake more severe
26.05.2017 | Oregon State University

nachricht Devils Hole: Ancient Traces of Climate History
24.05.2017 | Universität Innsbruck

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>