Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Modern microbial ecosystems provide window to early life on Earth

04.02.2016

UM Rosenstiel School-led team reveals new details on modern-day stromatolites

New research from a University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science-led science team provides new insight into one of the world's most diverse and extensive ecosystems of living microbes. The study offers a new perspective on the growth and structure of rare, microbial reefs, called stromatolites, which are a window into the emergence and evolution of life on Earth.


Elongate nested stromatolites, previously unknown in Hamelin Pool.

Credit: Pamela Reid, Ph.D., UM Rosenstiel School of Marine and Atmospheric Science

The international research team spent three years collecting data to map one of the few living stromatolite communities in the world, located in Shark Bay in Western Australia. The map of stromatolites produced by the scientists from an area in Shark Bay, called Hamelin Pool, revealed eight distinct "stromatolite provinces," each characterized by distinct morphological structures, many of which were previously unknown.

The results altered previous growth models for Shark Bay stromatolites and documented the importance of mineral precipitation in the formation of the stromatolite framework, a feature shared with Precambrian stromatolites that date back three billion years.

Stromatolites are buildups of limestone, similar to coral reefs, but formed by microbial mats. The activities of the microorganisms, particularly cyanobacteria, result in accretion of grains and precipitation of cements. Fossilized remains of stromatolites hold ancient records of early life for 75 percent of Earth's history. Stromatolite-forming microbes generated the oxygen in the atmosphere that allowed the evolution of higher organisms, including humans.

"The stromatolites in Shark Bay are a spectacular living laboratory that should be the best studied microbial system in the world," said UM Rosenstiel School Professor of Marine Geosciences Pamela Reid, a co-author of the study.

Despite their abundance on early Earth, stromatolites are rare in the modern world and are not well understood. Modern stomatolites, such as those in Shark Bay in Western Australia, develop in extreme, high saline environments where animal grazing and competition with organisms such as corals and seaweeds are scarce.

"The time to study Shark Bay stromatolites is now as they are vulnerable to rising sea levels in the coming decades" said lead author Erica Suosaari, UM Rosenstiel School alumna and current research fellow. "Continued monitoring and detailed studies of the Shark Bay World Heritage site will be critical for management and conservation of this unique landscape, and will advance our understanding of early Earth."

The new findings on morphological diversity, microbial communities, and mineral precipitation in living stromatolites in Shark Bay indicate the importance of this system as a window into early Earth, providing a basis for reconstructing ancient environments and understanding how microbial communities interacted with these environments.

###

The study, titled "New multi-scale perspectives on the stromatolites of Shark Bay, Western Australia," was published in the Feb. 3 online edition of the Nature journal Scientific Reports. The study's authors include: Erica Suosaari, Pamela Reid, Paul Hagan and Gregor Eberli of the UM Rosenstiel School; Phillip Playford of the Geological Survey of Western Australia; Jamie Foster and Giorgio Casaburi of the University of Florida; John Stolz of Duquesne University in Pennsylvania; Ved Chirayath of the NASA Ames Research Center; Ian Macintrye of the Smithsonian Institution; and Noah Planavsky of Yale University. The study is available here: http://www.nature.com/articles/srep20557

About the University of Miami's Rosenstiel School

The University of Miami is one of the largest private research institutions in the southeastern United States. The University's mission is to provide quality education, attract and retain outstanding students, support the faculty and their research, and build an endowment for University initiatives. Founded in the 1940's, the Rosenstiel School of Marine & Atmospheric Science has grown into one of the world's premier marine and atmospheric research institutions. Offering dynamic interdisciplinary academics, the Rosenstiel School is dedicated to helping communities to better understand the planet, participating in the establishment of environmental policies, and aiding in the improvement of society and quality of life. For more information, visit: http://www.rsmas.miami.edu.

Diana Udel | EurekAlert!

More articles from Earth Sciences:

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

nachricht Canadian glaciers now major contributor to sea level change, UCI study shows
15.02.2017 | University of California - Irvine

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>