Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Methane is leaking from permafrost offshore Siberia

23.12.2014

Yamal Peninsula in Siberia has recently become world famous. Spectacular sinkholes, appeared as out of nowhere in the permafrost of the area, sparking the speculations of significant release of greenhouse gas methane into the atmosphere.

What is less known, is that there is a lot of greenhouse gas methane released from the seabed offshore the West Yamal Peninsula. Gas is released in an area of at least 7500 m2, with gas flares extending up to 25 meters in the water column. Anyhow, there is still a large amount of methane gas that is contained by an impermeable cap of permafrost. And this permafrost is thawing.


Kara Sea is a section of the Arctic Ocean between Novaya Zemlya and the Yamal Peninsula on the Siberian mainland. Siberian permafrost extends to the seabed of the Kara Sea, and it is thawing.

Credit: NASA

"The thawing of permafrost on the ocean floor is an ongoing process, likely to be exaggerated by the global warming of the world´s oceans." says PhD Alexey Portnov at Centre for Arctic Gas Hydrate, Climate and Environment (CAGE) at UiT, The Arctic University of Norway.

Portnov and his colleagues have recently published two papers about permafrost offshore West Yamal, in the Kara Sea. Papers look into the extent of permafrost on the ocean floor and how it is connected to the significant release of the greenhouse gas methane.

Permanently frozen soil

Permafrost, as the word implies, is the soil permanently frozen for two or more years. For something to stay permanently frozen, the temperature must of course stay bellow 0°C.

"Terrestrial Arctic is always frozen, average ground temperatures are low in Siberia which maintains permafrost down to 600-800 meters ground depth. But the ocean is another matter. Bottom water temperature is usually close to or above zero. Theoretically, therefore, we could never have thick permafrost under the sea," says Portnov "However, 20 000 years ago, during the last glacial maximum, the sea level dropped to minus 120 meters. It means that today´s shallow shelf area was land. It was Siberia. And Siberia was frozen. The permafrost on the ocean floor today was established in that period.

Last glacial maximum was the period in the history of the planet when ice sheets covered significant part of the Northern hemisphere. These ice sheets profoundly impacted Earth's climate, causing drought, desertification, and a dramatic drop in sea levels. Most likely the Yamal Peninsula was not covered with ice, but it was exposed to extremely cold conditions.

When the ice age ended some 12 000 years ago, and the climate warmed up, the ocean levels increased. Permafrost was submerged under the ocean water, and started it´s slow thawing. One of the reasons it has not thawed completely so far, is that bottom water temperatures are low, some - 0,5 degrees . That could very well change.

A fragile seal that is leaking

It was previously proposed that the permafrost in the Kara Sea, and other Arctic areas, extends to water depths up to 100 meters, creating a seal that gas cannot bypass. Portnov and collegues have found that the West Yamal shelf is leaking, profoundly, at depths much shallower than that.

Significant amount of gas is leaking at depths between 20 and 50 meters. This suggests that a continuous permafrost seal is much smaller than proposed. Close to the shore the permafrost seal may be few hundred meters thick, but tapers off towards 20 meters water depth. And it is fragile.

"The permafrost is thawing from two sides. The interior of the Earth is warm and is warming the permafrost from the bottom up. It is called geothermal heat flux and it is happening all the time, regardless of human influence. " says Portnov.

Evolution of permafrost

Portnov used mathematical models to map the evolution of the permafrost, and thus calculate its degradation since the end of the last ice age. The evolution of permafrost gives indication to what may happen to it in the future.

If the bottom ocean temperature is 0,5°C, the maximal possible permafrost thickness would likely take 9000 years to thaw. But if this temperature increases, the process would go much faster, because the thawing also happens from the top down.

"If the temperature of the oceans increases by two degrees as suggested by some reports, it will accelerate the thawing to the extreme. A warming climate could lead to an explosive gas release from the shallow areas."

Permafrost keeps the free methane gas in the sediments. But it also stabilizes gas hydrates, ice-like structures that usually need high pressure and low temperature to form.

"Gas hydrates normally form in water depths over 300 meters, because they depend on high pressure. But under permafrost the gas hydrate may stay stable even where the pressure is not that high, because of the constantly low temperatures."

Gas hydrates contain huge amount of methane gas, and it is destabilization of these that is believed to have caused the craters on the Yamal Peninsula.

References:

Portnov, A. Mienert, J. Serov, P. 2014 Modeling the evolution of climate-sensitive Arctic subsea permafrost in regions of extensive gas expulsion at the West Yamal shelf. Journal of Geophysical Research: Biogeosciences 119 (11) http://onlinelibrary.wiley.com/doi/10.1002/2014JG002685/abstract

Also: Portnov, A. et.al. 2013 Offshore permafrost decay and massive seabed methane escape in water depths >20 m at the South Kara Sea shelf. Geophysical Research Letters 40 (15)

http://onlinelibrary.wiley.com/doi/10.1002/grl.50735/abstract 

Maja Sojtaric | EurekAlert!
Further information:
http://www.uit.no
https://cage.uit.no/news/methane-leaking-permafrost-seal-offshore-siberia/

More articles from Earth Sciences:

nachricht Climate change weakens Walker circulation
20.10.2017 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

nachricht Shallow soils promote savannas in South America
20.10.2017 | Senckenberg Forschungsinstitut und Naturmuseen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>