Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Methane consumption by aerobic bacteria in anoxic lake waters

03.03.2015

Methane oxidation fueled by algal oxygen production

Methane emissions are strongly reduced in lakes with anoxic bottom waters. But here – contrary to what has previously been assumed – methane removal is not due to archaea or anaerobic bacteria. A new study on Lake Cadagno in Canton Ticino shows that the microorganisms responsible are aerobic proteobacteria. The oxygen they require is produced in situ by photosynthetic algae.


Sampling was performed from a platform on Lake Cadagno in Canton Ticino (southern Switzerland).

Jana Milucka, Max Planck Institute for Marine Microbiology, Bremen


Typical profiles of oxygen and methane concentrations in Lake Cadagno. Methane consumption occurs in a relatively thin water layer at a depth of 10–13 metres.

Eawag / Max Planck Institute for Marine Microbiology

In contrast to oceans, freshwater lakes – and tropical reservoirs – are significant sources of methane emissions. Methane, a greenhouse gas, arises from the degradation of organic material settling on the bottom. Although lakes occupy a much smaller proportion of the Earth’s surface than oceans, they account for a much larger proportion of methane emissions.

Well-mixed lakes, in turn, are the main contributors, while emissions from seasonally or permanently stratified lakes with anoxic bottom waters are greatly reduced. It has been assumed to date that the methane-removing processes occurring in such lakes are the same as those in marine systems. But a new study carried out on Lake Cadagno (Canton Ticino) by researchers from Eawag and the Max Planck Institute for Marine Microbiology (Bremen, Germany) shows that this is not the case.

The scientists demonstrated that methane is almost completely consumed in the anoxic waters of Lake Cadagno, but they did not detect any known anaerobic methane-oxidizing bacteria – or archaea, which are responsible for marine methane oxidation. Instead, water samples collected from a depth of around 12 metres were found to contain abundant aerobic proteobacteria – up to 240,000 cells per millilitre.

“We wondered, of course, how these aerobic bacteria can survive in anoxic waters,” says first author Jana Milucka of the Max Planck Institute for Marine Microbiology. To answer this question, the behaviour of the bacteria was investigated in laboratory experiments: methane oxidation was found to be stimulated only when oxygen was added to the samples incubated in vitro, or when they were exposed to light.

The scientists concluded that the oxygen required by the bacteria is produced by photosynthesis in neighbouring diatoms. Analysis by fluorescence microscopy showed that methane-oxidizing bacteria belonging to the family Methylococcaceae occur in close proximity to diatoms and can thus utilize the oxygen they generate (Fig. 2).

Thanks to the combined activity of bacteria and diatoms, methane is thus consumed in the lake rather than being released into the atmosphere. This type of methane removal has not previously been described in freshwater systems. Project leader Carsten Schubert of Eawag comments: “For lakes with anoxic layers, and also for certain marine zones, it looks as if the textbooks will have to be rewritten.”

Aerobic methane-oxidizing bacteria may play a significant role wherever sufficient light penetrates to anoxic water layers; according to Schubert, this is the case in most Swiss lakes. Similar observations have already been made in Lake Rotsee near Lucerne, in studies not yet published. Research will now focus on deeper lakes, where initial investigations suggest that different processes occur.

Further information:
CH: Carsten Schubert, Eawag: +41 (0)58 765 2195; carsten.schubert@eawag.ch
D: Marcel Kuypers, Max Plank Institute for Marine Microbiology, Bremen: +49 421 2028 602; mkuypers@mpi-bremen.de

or from the press officer
Manfred Schloesser, Max Plank Institute for Marine Microbiology, Bremen: +49 421 2028 704; mschloes@mpi-bremen.de

Original article
Methane oxidation coupled to oxygenic photosynthesis in anoxic waters; Jana Milucka, Mathias Kirf, Lu Lu, Andreas Krupke, Phyllis Lam, Sten Littmann, Marcel MM Kuypers and Carsten J Schubert; The ISME Journal (International Society for Microbial Ecology), advance online publication, 13 February 2015; doi:10.1038/ismej.2015.12;

Dr. Manfred Schloesser | Max-Planck-Institut für marine Mikrobiologie
Further information:
http://www.mpi-bremen.de

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>