Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Methane consumption by aerobic bacteria in anoxic lake waters

03.03.2015

Methane oxidation fueled by algal oxygen production

Methane emissions are strongly reduced in lakes with anoxic bottom waters. But here – contrary to what has previously been assumed – methane removal is not due to archaea or anaerobic bacteria. A new study on Lake Cadagno in Canton Ticino shows that the microorganisms responsible are aerobic proteobacteria. The oxygen they require is produced in situ by photosynthetic algae.


Sampling was performed from a platform on Lake Cadagno in Canton Ticino (southern Switzerland).

Jana Milucka, Max Planck Institute for Marine Microbiology, Bremen


Typical profiles of oxygen and methane concentrations in Lake Cadagno. Methane consumption occurs in a relatively thin water layer at a depth of 10–13 metres.

Eawag / Max Planck Institute for Marine Microbiology

In contrast to oceans, freshwater lakes – and tropical reservoirs – are significant sources of methane emissions. Methane, a greenhouse gas, arises from the degradation of organic material settling on the bottom. Although lakes occupy a much smaller proportion of the Earth’s surface than oceans, they account for a much larger proportion of methane emissions.

Well-mixed lakes, in turn, are the main contributors, while emissions from seasonally or permanently stratified lakes with anoxic bottom waters are greatly reduced. It has been assumed to date that the methane-removing processes occurring in such lakes are the same as those in marine systems. But a new study carried out on Lake Cadagno (Canton Ticino) by researchers from Eawag and the Max Planck Institute for Marine Microbiology (Bremen, Germany) shows that this is not the case.

The scientists demonstrated that methane is almost completely consumed in the anoxic waters of Lake Cadagno, but they did not detect any known anaerobic methane-oxidizing bacteria – or archaea, which are responsible for marine methane oxidation. Instead, water samples collected from a depth of around 12 metres were found to contain abundant aerobic proteobacteria – up to 240,000 cells per millilitre.

“We wondered, of course, how these aerobic bacteria can survive in anoxic waters,” says first author Jana Milucka of the Max Planck Institute for Marine Microbiology. To answer this question, the behaviour of the bacteria was investigated in laboratory experiments: methane oxidation was found to be stimulated only when oxygen was added to the samples incubated in vitro, or when they were exposed to light.

The scientists concluded that the oxygen required by the bacteria is produced by photosynthesis in neighbouring diatoms. Analysis by fluorescence microscopy showed that methane-oxidizing bacteria belonging to the family Methylococcaceae occur in close proximity to diatoms and can thus utilize the oxygen they generate (Fig. 2).

Thanks to the combined activity of bacteria and diatoms, methane is thus consumed in the lake rather than being released into the atmosphere. This type of methane removal has not previously been described in freshwater systems. Project leader Carsten Schubert of Eawag comments: “For lakes with anoxic layers, and also for certain marine zones, it looks as if the textbooks will have to be rewritten.”

Aerobic methane-oxidizing bacteria may play a significant role wherever sufficient light penetrates to anoxic water layers; according to Schubert, this is the case in most Swiss lakes. Similar observations have already been made in Lake Rotsee near Lucerne, in studies not yet published. Research will now focus on deeper lakes, where initial investigations suggest that different processes occur.

Further information:
CH: Carsten Schubert, Eawag: +41 (0)58 765 2195; carsten.schubert@eawag.ch
D: Marcel Kuypers, Max Plank Institute for Marine Microbiology, Bremen: +49 421 2028 602; mkuypers@mpi-bremen.de

or from the press officer
Manfred Schloesser, Max Plank Institute for Marine Microbiology, Bremen: +49 421 2028 704; mschloes@mpi-bremen.de

Original article
Methane oxidation coupled to oxygenic photosynthesis in anoxic waters; Jana Milucka, Mathias Kirf, Lu Lu, Andreas Krupke, Phyllis Lam, Sten Littmann, Marcel MM Kuypers and Carsten J Schubert; The ISME Journal (International Society for Microbial Ecology), advance online publication, 13 February 2015; doi:10.1038/ismej.2015.12;

Dr. Manfred Schloesser | Max-Planck-Institut für marine Mikrobiologie
Further information:
http://www.mpi-bremen.de

More articles from Earth Sciences:

nachricht NASA eyes Pineapple Express soaking California
24.02.2017 | NASA/Goddard Space Flight Center

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>