Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Meteorite hunters and scientists discover one of Europe’s most extensive meteorite strewn fields

18.08.2016

Scientists from the Naturhistorischen Museum der Burgergemeinde Bern, the University of Bern and a group of meteorite hunters have discovered a substantial meteorite fall in their own backyard: a 160,000 year old strewn field is the sensation in Twannberg, near the Swiss city of Biel. Up to now, 600 fragments derive from the meteorite “Twannberg”, constituting one of Europe’s three most important strewn fields of iron meteorites.

The most spectacular meteorite find to hit Switzerland documents a significant fall event in Europe: a huge meteorite strewn field near Twann in the Canton of Bern (Switzerland) has been identified by team coordinator Beda Hofmann from the Natural History Museum Bern, scientists from the University of Bern and about 50 meteorite hunters.


Meteorite hunter in the huge meteorite strewn field near Twann in the Canton of Bern (Switzerland)

Three years of dedicated and tireless recovery expeditions have turned up 600 fragments belonging to the Twannberg Meteorite, a fall determined by Bern physicists and collaborating researchers from the Helmholz Center in Dresden-Rossendorf, Germany to have struck the Twann region about 160,000 years ago. This site represents one of nthe most extensive strewn fields in Europe, comparable with Europe’s two other big iron meteorite strewn fields, Morasko (Poland) and Muonionalusta (Northern Sweden).

Noble gas analyses conducted at the Physics Institute, University of Bern suggest that the “Twannberg” meteorite, as it is officially known, was approximately 6 to 20 meters in diameter, corresponding to 1,000−30,000 tons of massive iron. In the case of Morasko, estimates are at 1000 tons. Twannberg is considered one of the World’s largest known iron meteorite showers.

At the time of the meteorite fall, numerous fragments fell as a meteorite shower over a region of yet unknown expanse in the Swiss Jura, north of Lake Biel in today’s Canton of Bern. Although the assessment of this spectacular event and strewn field is still in progress, it is clear that the strewn field is extensive and that the number of meteorite fragments is estimated way over 1000.

Up to now, the strewn field covered a distance of 5 kilometers. However, in comparison to Muonionalusta (10 km) and Morasko (2.7 km) it is plausible that the strewn field extends for up to 15 kilometers. Up to now no crater has been detected, which likely reflects the fact that glaciers covered the region 24,000 years ago.

The Twannberg meteorite is not only the biggest of the eight meteorites recovered in Switzerland but it is also the only meteorite to be documented by numerous fragments. Twannberg represents one of the rarest examples of iron meteorites, the class IIG of which only 6 recognized finds are known. In addition to Switzerland, IIG iron meteorites have been found in the USA, Chile and South Africa.

Historical Context of the Twannberg Meteorite

The first Twannberg meteorite was discovered in 1984 by a farmer collecting stones in a field. For a long time this was the only known find. In 2000 another mass was found in the attic of an old house in Twann. By 2007, three small masses were additionally reported by gold prospectors from the Twannbach (Twann stream). Since this material was either transported by human agency or by stream away from the site of original impact, these finds could hardly document this unique fall.

New finds collected during 2009-2013 in the Twannbach ravine revealed 77 meteorites reaching weights up to 177 grams. Although these new finds increased in number, the site of impact still remained a mystery since it was unclear how far they had been transported down stream. Since so many meteorites were found in such a short time, it became clear that these meteorites fell as a shower. In 2013, a decisive find (TW83) was collected in the same field as the first in 1984.

Dr. Beda Hofmann, a renowned capacity in international meteorite research and head of Earth Sciences at the Natural History Museum Bern, has conducted 5 search expeditions since 2014. His team of 50 meteorite rockhounds, equipped with metal detectors and convening from as far away as Russia, the Czech Republic, Germany and diverse corners of Switzerland have scoured the region for additional fragments. Like precious truffles underground, new meteorites were detected at a typical depth of 15 cm. By June 2016, 570 meteorites weighing a total of 72.5 kilos were found. Meanwhile Beda Hofmann claims still more returns from the Twann strewn field and will no doubt report even more in upcoming years.

Special Exhibition presents parts of the Twannberg Meteorite
On August 19th the Natural History Museum Bern will open its doors for special exhibition of the “Twannberg Meteorite – Hunters of a lost treasure”, enabling a rare glimpse into the exciting recovery of meteorites and meteorite research.

Exhibition website with additional information and photos: www.twannbergmeteorit.ch

Contact: Simon Jäggi, Director of Communication, simon.jaeggi@nmbe.ch, +41 31 350 72 97
Beda Hofmann, Head Earth Sciences, beda.hofmann@nmbe.ch, +4131 350 72 40
Marc Jost, Meteorite collector, spacejewels@bluewin.ch, +41 79 427 9657

Weitere Informationen:

http://www.twannbergmeteorit.ch
http://www.nmbe.ch/informieren/aktuell/mediencorner
http://www.hou.usra.edu/meetings/metsoc2016/pdf/6160.pdf
http://www.hou.usra.edu/meetings/metsoc2016/pdf/6187.pdf

Simon Jäggi | idw - Informationsdienst Wissenschaft

Further reports about: Earth gold prospectors meteorite meteorite fragments meteorite hunters

More articles from Earth Sciences:

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

nachricht The Wadden Sea and the Elbe Studied with Zeppelin, Drones and Research Ships
19.09.2017 | Helmholtz-Zentrum Geesthacht - Zentrum für Material- und Küstenforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Glycosylation: Mapping Uncharted Territory

21.09.2017 | Life Sciences

Highly precise wiring in the Cerebral Cortex

21.09.2017 | Health and Medicine

Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?

21.09.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>