Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Meltwater from the Greenland ice sheet releasing faster

05.01.2016

The firn layers of the Greenland ice sheet might store less meltwater than previously assumed. Researchers from the USA, Denmark and the University of Zurich fear that this could lead to increased release of the meltwater into the oceans.

The near-surface layers of the Greenland ice sheet are made up of snow that is gradually being converted into glacier ice. In Greenland this firn layer is up to 80 m thick.


Meltwater rivers on the Greenland ice sheet.

Dirk van As, Geological Survey of Denmark and Greenland

As researchers from Denmark, the USA and the University of Zurich have demonstrated, the current atmospheric warming is changing this firn layer such that resulting meltwater is being released faster than previously anticipated.

“Basically our research shows that the firn reacts fast to a changing climate. Its ability to limit mass loss of the ice sheet by retaining meltwater could be smaller than previously assumed”, sums up Horst Machguth, lead author of the study by the University of Zurich.

The researchers travelled to Greenland to investigate the impact of recent atmospheric warming on the structure of near-surface snow and ice layers, called firn. Over the course of three expeditions on the ice sheet, the researchers traversed several hundred kilometres to map the structure of the firn layers with a radar unit and by drilling regularly-spaced firn cores.

Firn layer acts sponge-like

Earlier research has shown that the firn layer acts similar to a sponge. It stores meltwater percolating down into the firn from the surface in what are referred to as ‘ice lenses’. “It is unknown how the firn reacted to the recent very warm summer in Greenland. Our research aims to clarify whether the firn was indeed capable of retaining the meltwater, or whether the sponge has been overwhelmed.”

The scientists drilled numerous 20 metre-deep cores to sample the firn, also targeting sites where similar cores had been drilled 15 to 20 years ago. At many locations, a comparison of the new and old cores revealed substantially more ice lenses than in the past and that the firn stored the meltwater similar to a sponge. But this was not the case everywhere. Cores drilled at lower elevations indicated that the exceptional amounts of meltwater formed a surprisingly massive ice layer directly below the ice sheet surface.

Meltwater no longer percolating

“It appears that the intensive and repeated entry of meltwater formed numerous ice lenses, which ultimately hindered percolation of further meltwater”, says Dirk van As, a co-author of the study from the Geological Survey in Denmark and Greenland. As a result, the many small lenses grew to form an ice layer of several meters in thickness that now acts as a lid on top of otherwise sponge-like firn.

Radar measurements identified that this layer was continuous over dozens of kilometers. New meltwater, hitting that lid of ice was unable to percolate into the firn and remained at the surface. Satellite imagery shows that the water prevented from percolating collected at the surface, where it formed rivers that flow towards the margin of the ice sheet.

“In contrast to storing meltwater in porous firn, this mechanism increases runoff from the ice sheet”, explains Mike MacFerrin, second-author of the study and a researcher at the University of Colorado at Boulder.

“This process has not previously been observed in Greenland. The total extent of this ice lid capping the ice sheet firn remains unknown. For this reason, the amount of additional ice sheet runoff associated with this newly observed process cannot yet be quantified.” However, similar changes in firn structure have already been observed in the Canadian Arctic, which leads to the conclusion that this phenomenon could be widespread.

Literature:
Machguth, H., M. MacFerrin, D. van As, J. E. Box, C. Charalampidis, W. Colgan, R. S. Fausto, H. A. J. Meijer, E. Mosley-Thompson and R. S. W. van de Wal. Greenland meltwater storage in firn limited by near-surface ice formation. Nature Climate Change. Doi: 10.1038/NCLIMATE2899
http://nature.com/articles/doi:10.1038/nclimate2899

Contacts:
Horst Machguth
World Glacier Monitoring Service
Department of Geography
University of Zurich.
Phone: +41446355119
Email: horst.machguth@geo.uzh.ch

Dirk van As
Geological Survey of Denmark and Greenland (GEUS) Copenhagen, Denmark
Phone: +4591333818
Email: dva@geus.dk

Michael MacFerrin
Cooperative Institute for Research in Environmental Sciences (CIRES)
University of Colorado at Boulder, USA
Phone: 1-303-565-9920
Email: michael.macferrin@colorado.edu

Beat Müller | Universität Zürich
Further information:
http://www.uzh.ch/

More articles from Earth Sciences:

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

nachricht Canadian glaciers now major contributor to sea level change, UCI study shows
15.02.2017 | University of California - Irvine

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Tune your radio: galaxies sing while forming stars

21.02.2017 | Physics and Astronomy

Improved Speech Intelligibility and Automatic Speech-to-Text Conversion for Call Centers

21.02.2017 | Trade Fair News

36 big data research projects

21.02.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>