Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Meltwater from the Greenland ice sheet releasing faster

05.01.2016

The firn layers of the Greenland ice sheet might store less meltwater than previously assumed. Researchers from the USA, Denmark and the University of Zurich fear that this could lead to increased release of the meltwater into the oceans.

The near-surface layers of the Greenland ice sheet are made up of snow that is gradually being converted into glacier ice. In Greenland this firn layer is up to 80 m thick.


Meltwater rivers on the Greenland ice sheet.

Dirk van As, Geological Survey of Denmark and Greenland

As researchers from Denmark, the USA and the University of Zurich have demonstrated, the current atmospheric warming is changing this firn layer such that resulting meltwater is being released faster than previously anticipated.

“Basically our research shows that the firn reacts fast to a changing climate. Its ability to limit mass loss of the ice sheet by retaining meltwater could be smaller than previously assumed”, sums up Horst Machguth, lead author of the study by the University of Zurich.

The researchers travelled to Greenland to investigate the impact of recent atmospheric warming on the structure of near-surface snow and ice layers, called firn. Over the course of three expeditions on the ice sheet, the researchers traversed several hundred kilometres to map the structure of the firn layers with a radar unit and by drilling regularly-spaced firn cores.

Firn layer acts sponge-like

Earlier research has shown that the firn layer acts similar to a sponge. It stores meltwater percolating down into the firn from the surface in what are referred to as ‘ice lenses’. “It is unknown how the firn reacted to the recent very warm summer in Greenland. Our research aims to clarify whether the firn was indeed capable of retaining the meltwater, or whether the sponge has been overwhelmed.”

The scientists drilled numerous 20 metre-deep cores to sample the firn, also targeting sites where similar cores had been drilled 15 to 20 years ago. At many locations, a comparison of the new and old cores revealed substantially more ice lenses than in the past and that the firn stored the meltwater similar to a sponge. But this was not the case everywhere. Cores drilled at lower elevations indicated that the exceptional amounts of meltwater formed a surprisingly massive ice layer directly below the ice sheet surface.

Meltwater no longer percolating

“It appears that the intensive and repeated entry of meltwater formed numerous ice lenses, which ultimately hindered percolation of further meltwater”, says Dirk van As, a co-author of the study from the Geological Survey in Denmark and Greenland. As a result, the many small lenses grew to form an ice layer of several meters in thickness that now acts as a lid on top of otherwise sponge-like firn.

Radar measurements identified that this layer was continuous over dozens of kilometers. New meltwater, hitting that lid of ice was unable to percolate into the firn and remained at the surface. Satellite imagery shows that the water prevented from percolating collected at the surface, where it formed rivers that flow towards the margin of the ice sheet.

“In contrast to storing meltwater in porous firn, this mechanism increases runoff from the ice sheet”, explains Mike MacFerrin, second-author of the study and a researcher at the University of Colorado at Boulder.

“This process has not previously been observed in Greenland. The total extent of this ice lid capping the ice sheet firn remains unknown. For this reason, the amount of additional ice sheet runoff associated with this newly observed process cannot yet be quantified.” However, similar changes in firn structure have already been observed in the Canadian Arctic, which leads to the conclusion that this phenomenon could be widespread.

Literature:
Machguth, H., M. MacFerrin, D. van As, J. E. Box, C. Charalampidis, W. Colgan, R. S. Fausto, H. A. J. Meijer, E. Mosley-Thompson and R. S. W. van de Wal. Greenland meltwater storage in firn limited by near-surface ice formation. Nature Climate Change. Doi: 10.1038/NCLIMATE2899
http://nature.com/articles/doi:10.1038/nclimate2899

Contacts:
Horst Machguth
World Glacier Monitoring Service
Department of Geography
University of Zurich.
Phone: +41446355119
Email: horst.machguth@geo.uzh.ch

Dirk van As
Geological Survey of Denmark and Greenland (GEUS) Copenhagen, Denmark
Phone: +4591333818
Email: dva@geus.dk

Michael MacFerrin
Cooperative Institute for Research in Environmental Sciences (CIRES)
University of Colorado at Boulder, USA
Phone: 1-303-565-9920
Email: michael.macferrin@colorado.edu

Beat Müller | Universität Zürich
Further information:
http://www.uzh.ch/

More articles from Earth Sciences:

nachricht Mountain glaciers shrinking across the West
23.10.2017 | University of Washington

nachricht Climate change weakens Walker circulation
20.10.2017 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>