Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Melting glaciers prove to be noisiest places in ocean, study shows

06.03.2015

A new study in Alaska and Antarctica shows that the noisiest places in the ocean are where glaciers in narrow sea inlets called fjords melt into the saltwater, thereby liberating underwater gushes of bubbles that were once trapped in the ice.

According to research accepted for publication in Geophysical Research Letters, a journal of the American Geophysical Union, the underwater noise levels are much louder than previously thought, which leads scientists to ask how the noise levels influence the behavior of harbor seals and whales in Alaska’s fjords.


Researchers deploy a hydrophone into Icy Bay, Alaska. Scientists used the underwater microphones to listen and record the average noise levels in three bays in Alaska and Antarctica whose fjords have glaciers that flow into the ocean. They found that the noisiest places in the ocean are where glaciers in fjords melt into the saltwater.

Credit: Jeffrey Nystuen.

“The ocean ambient sound gives us clues to the physical processes going on, but it also is an important aspect of the environment in which marine mammals and fish live. Like teenagers at a loud rock concert, the seals and whales modify their behavior depending on the ambient sound levels,” said Erin Pettit, a glaciologist from the University of Alaska Fairbanks, Department of Geosciences. Pettit conducted the study with researchers from the University of Texas at Austin; the University of Washington, Seattle; and the United States Geological Survey.

The team used underwater microphones to listen and record the average noise levels in three bays whose fjords have glaciers that flow into the ocean – Icy Bay, Alaska; Yakutat Bay, Alaska; and Andvord Bay, Antarctica. All of the fjords have many icebergs where chunks of the glacier fell or calved into the water.

The researchers found that the average underwater noise level in these fjords was higher than any other source of ocean noise that has been measured so far including noise from weather, the movement and communication of fish, and human-generated noise from shipping and sonar devices. The team measured noise levels between 300 and 20,000 Hz, which is most of a human’s hearing range.

Glacier calving contributed to some of the noise, but the loud sounds were short-lived. When looking at overall noise levels for a long period of time, Pettit said it was the consistent melting of ice from the glacier and its icebergs that was the real noise generator. This is because the air trapped within the glacier ice escapes rapidly as it melts into saltwater, forming bubbles in the water that pop as they pinch off from the ice.

The black stars show that the underwater noise levels in Icy Bay, Alaska are significantly louder than noise levels caused by storms, melting sea ice or other sources of underwater noise. Credit: Erin Pettit
The black stars show that the underwater noise levels in Icy Bay, Alaska are significantly louder than noise levels caused by storms, melting sea ice or other sources of underwater noise.
Credit: Erin Pettit

Pettit said their findings raise questions about how the underwater noise in the fjords will affect animals as climate change first increases the rate at which glaciers melt into the ocean water and then stops the process altogether as the glaciers shrink and retreat onto land.

She said fjords with glaciers are foraging hotspots for seabirds and marine mammals as well as important breeding locations for harbor seals. One possibility, she said, is that the seals use the underwater noise to help conceal them from killer whales, which rely on listening to locate the seals. As glaciers retreat onto land, the seals would lose the acoustic camouflage, which might explain why harbor seal populations are declining in fjords where glaciers have retreated onto land, she said.

She said further studies are needed to investigate the relationship between the underwater noise levels and the fjord ecosystem. The team will continue listening to glaciers to see if they can develop a method of predicting glacier melt based on the underwater sounds.

The American Geophysical Union is dedicated to advancing the Earth and space sciences for the benefit of humanity through its scholarly publications, conferences, and outreach programs. AGU is a not-for-profit, professional, scientific organization representing more than 60,000 members in 139 countries. Join the conversation onFacebook, Twitter, YouTube, and our other social media channels.

Notes for Journalists
Journalists and public information officers (PIOs) of educational and scientific institutions who have registered with AGU can download a PDF copy of this article by clicking on this link: http://onlinelibrary.wiley.com/doi/10.1002/2014GL062950/abstract?campaign=wlytk-41855.5282060185

Or, you may order a copy of the final paper by emailing your request to Peter Weiss at pweiss@agu.org. Please provide your name, the name of your publication, and your phone number.

Neither the paper nor this press release is under embargo.
Title
“Unusually Loud Ambient Noise in Tidewater Glacier Fjords: A Signal of Ice Melt”

Authors:
Erin Pettit, Department of Geosciences, University of Alaska Fairbanks;

Kevin Lee, Applied Research Laboratories, University of Texas at Austin;

Joel Brann, Department of Geosciences, University of Alaska Fairbanks;

Jeffrey Nystuen, Applied Physics Laboratory, University of Washington, Seattle;

Preston Wilson, Applied Research Laboratories, University of Texas at Austin & Department of Mechanical Engineering, University of Texas at Austin;

Shad O’Neel, Alaska Science Center, United States Geological Survey.

Contact Information for the Authors:
Erin Pettit: +1 (206) 619-1752, pettit@gi.alaska.edu


AGU Contact:
Peter Weiss
+1 (202) 777-7507
pweiss@agu.org

University of Alaska Fairbanks Contact:
Meghan Murphy
+1 (907) 474-7541
mmmurphy3@alaska.edu

Peter Weiss | American Geophysical Union
Further information:
http://www.agu.org
http://news.agu.org/press-release/melting-glaciers-prove-to-be-noisiest-places-in-ocean-study-shows/

More articles from Earth Sciences:

nachricht Impacts of mass coral die-off on Indian Ocean reefs revealed
21.02.2017 | University of Exeter

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>