Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Melting glaciers prove to be noisiest places in ocean, study shows

06.03.2015

A new study in Alaska and Antarctica shows that the noisiest places in the ocean are where glaciers in narrow sea inlets called fjords melt into the saltwater, thereby liberating underwater gushes of bubbles that were once trapped in the ice.

According to research accepted for publication in Geophysical Research Letters, a journal of the American Geophysical Union, the underwater noise levels are much louder than previously thought, which leads scientists to ask how the noise levels influence the behavior of harbor seals and whales in Alaska’s fjords.


Researchers deploy a hydrophone into Icy Bay, Alaska. Scientists used the underwater microphones to listen and record the average noise levels in three bays in Alaska and Antarctica whose fjords have glaciers that flow into the ocean. They found that the noisiest places in the ocean are where glaciers in fjords melt into the saltwater.

Credit: Jeffrey Nystuen.

“The ocean ambient sound gives us clues to the physical processes going on, but it also is an important aspect of the environment in which marine mammals and fish live. Like teenagers at a loud rock concert, the seals and whales modify their behavior depending on the ambient sound levels,” said Erin Pettit, a glaciologist from the University of Alaska Fairbanks, Department of Geosciences. Pettit conducted the study with researchers from the University of Texas at Austin; the University of Washington, Seattle; and the United States Geological Survey.

The team used underwater microphones to listen and record the average noise levels in three bays whose fjords have glaciers that flow into the ocean – Icy Bay, Alaska; Yakutat Bay, Alaska; and Andvord Bay, Antarctica. All of the fjords have many icebergs where chunks of the glacier fell or calved into the water.

The researchers found that the average underwater noise level in these fjords was higher than any other source of ocean noise that has been measured so far including noise from weather, the movement and communication of fish, and human-generated noise from shipping and sonar devices. The team measured noise levels between 300 and 20,000 Hz, which is most of a human’s hearing range.

Glacier calving contributed to some of the noise, but the loud sounds were short-lived. When looking at overall noise levels for a long period of time, Pettit said it was the consistent melting of ice from the glacier and its icebergs that was the real noise generator. This is because the air trapped within the glacier ice escapes rapidly as it melts into saltwater, forming bubbles in the water that pop as they pinch off from the ice.

The black stars show that the underwater noise levels in Icy Bay, Alaska are significantly louder than noise levels caused by storms, melting sea ice or other sources of underwater noise. Credit: Erin Pettit
The black stars show that the underwater noise levels in Icy Bay, Alaska are significantly louder than noise levels caused by storms, melting sea ice or other sources of underwater noise.
Credit: Erin Pettit

Pettit said their findings raise questions about how the underwater noise in the fjords will affect animals as climate change first increases the rate at which glaciers melt into the ocean water and then stops the process altogether as the glaciers shrink and retreat onto land.

She said fjords with glaciers are foraging hotspots for seabirds and marine mammals as well as important breeding locations for harbor seals. One possibility, she said, is that the seals use the underwater noise to help conceal them from killer whales, which rely on listening to locate the seals. As glaciers retreat onto land, the seals would lose the acoustic camouflage, which might explain why harbor seal populations are declining in fjords where glaciers have retreated onto land, she said.

She said further studies are needed to investigate the relationship between the underwater noise levels and the fjord ecosystem. The team will continue listening to glaciers to see if they can develop a method of predicting glacier melt based on the underwater sounds.

The American Geophysical Union is dedicated to advancing the Earth and space sciences for the benefit of humanity through its scholarly publications, conferences, and outreach programs. AGU is a not-for-profit, professional, scientific organization representing more than 60,000 members in 139 countries. Join the conversation onFacebook, Twitter, YouTube, and our other social media channels.

Notes for Journalists
Journalists and public information officers (PIOs) of educational and scientific institutions who have registered with AGU can download a PDF copy of this article by clicking on this link: http://onlinelibrary.wiley.com/doi/10.1002/2014GL062950/abstract?campaign=wlytk-41855.5282060185

Or, you may order a copy of the final paper by emailing your request to Peter Weiss at pweiss@agu.org. Please provide your name, the name of your publication, and your phone number.

Neither the paper nor this press release is under embargo.
Title
“Unusually Loud Ambient Noise in Tidewater Glacier Fjords: A Signal of Ice Melt”

Authors:
Erin Pettit, Department of Geosciences, University of Alaska Fairbanks;

Kevin Lee, Applied Research Laboratories, University of Texas at Austin;

Joel Brann, Department of Geosciences, University of Alaska Fairbanks;

Jeffrey Nystuen, Applied Physics Laboratory, University of Washington, Seattle;

Preston Wilson, Applied Research Laboratories, University of Texas at Austin & Department of Mechanical Engineering, University of Texas at Austin;

Shad O’Neel, Alaska Science Center, United States Geological Survey.

Contact Information for the Authors:
Erin Pettit: +1 (206) 619-1752, pettit@gi.alaska.edu


AGU Contact:
Peter Weiss
+1 (202) 777-7507
pweiss@agu.org

University of Alaska Fairbanks Contact:
Meghan Murphy
+1 (907) 474-7541
mmmurphy3@alaska.edu

Peter Weiss | American Geophysical Union
Further information:
http://www.agu.org
http://news.agu.org/press-release/melting-glaciers-prove-to-be-noisiest-places-in-ocean-study-shows/

More articles from Earth Sciences:

nachricht Early organic carbon got deep burial in mantle
25.04.2017 | Rice University

nachricht New atlas provides highest-resolution imagery of the Polar Regions seafloor
25.04.2017 | British Antarctic Survey

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>