Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MBARI's seafloor maps provide new information about 2015 eruption at Axial Seamount

16.12.2016

Axial Seamount, a large underwater volcano about 470 kilometers (290 miles) offshore of the Oregon coast, is one of the most active volcanoes in the world-and one of the most intensively studied. Three research papers, to be published this week, describe a large eruption on Axial Seamount that occurred in April 2015.

At the 2016 meeting of the American Geophysical Union (AGU), researchers from the Monterey Bay Aquarium Research Institute (MBARI) will be presenting a new seafloor map that complements these research papers, showing the results of detailed underwater surveys conducted in August 2016, after the papers were written. This map reveals a number of previously undocumented flows from the 2015 eruption.


Part of the new map of Axial Seamount produced by MBARI researchers. Black outlines show lava flows from 2015 eruption. Image (c) 2016 MBARI

Credit: (c) 2016 MBARI

By comparing the new map with survey data before the 2015 eruption, researchers were able to precisely estimate the volume of lava emitted during the 2015 eruption. The new data indicate that the eruption consisted of 14 separate lava flows containing almost 156 million cubic meters of lava.

The new map also allowed geologists to locate precisely where the lava was disgorged from the seafloor. During the 2015 eruption, a series of "eruptive fissures" extended from the north end of the Axial crater (caldera) and far up the north rift zone--a total distance of 19 kilometers.

The new map doesn't just show the lava that erupted during 2015. It covers the entire Axial caldera, as well as the north and south rift zones. Thus it will serve as a useful benchmark for geologists the next time the volcano erupts.

Since 2006, MBARI researchers have been mapping the seafloor at Axial using sonar systems mounted on autonomous underwater vehicles (AUVs). For this map, researchers combined data from MBARI's seafloor mapping AUVs with data from Sentry, an AUV operated by Woods Hole Oceanographic Institution. Because these AUVs fly just 50 to 75 meters above the seafloor, they reveal details such as thin lava flows that are invisible to sonar from surface ships.

Seafloor pressure recorders such as those deployed on the Ocean Observatories Initiative (OOI) Cabled Array at Axial Seamount can record very small changes in seafloor depth (deformation). But they only provide point measurements. To show deformation over a larger area, MBARI researchers ran identical sets of AUV survey lines across the entire Axial caldera in 2011, 2014, 2015, and 2016.

These repeated surveys showed that the center of the caldera bulged up as much 1.8 meters between 2011 and 2014 (after the 2011 eruption), then subsided more than one meter between 2014 and 2015 (during the 2015 eruption). Between 2015 and 2016, the caldera floor uplifted about one half of a meter, which suggests that that magma is building up below the caldera in advance of the next eruption

In addition to running AUV surveys, over the past 10 years MBARI researchers have conducted about 40 dives on Axial Seamount using remotely operated vehicles (ROVs). Their latest dives, in 2016, revealed fascinating details about the 2015 flow. For example, on one fresh lava flow, the researchers discovered a field of tiny (30- to 50-centimeter-tall) hydrothermal chimneys, complete with tubeworms and other vent animals.

The 2016 ROV dives also revealed hundreds of lava "pillows" that exploded during the 2015 eruption, in parts of the new flows not explored in 2015 during ROV Jason dives. Tens of thousands of gunshot-like sounds were documented by seafloor seismometers on the OOI Cabled Array, as described in one of the research papers published in Science this week. Geologists suspect that these sounds were produced when seawater became trapped beneath fingers of hot lava, suddenly turned to steam, and exploded.

Much larger explosions apparently occurred earlier in the history of Axial Seamount, according to research conducted by former MBARI postdoctoral fellow Ryan Portner. These explosions scattered huge volumes of pulverized lava over wide areas of seafloor. Portner analyzed layers of fine-grained sediment that collected on the rims of the summit caldera, and used the shells of foraminifera (tiny marine animals) to determine how long ago these sediment layers were deposited. His research suggests the main caldera at Axial Seamount formed between 700 and 1,200 years ago, answering a question that has been perplexing geologists since they started studying Axial Seamount in the early 1980s.

Geologists know that Axial Volcano erupted in 1998, 2011, and 2015, and dozens of times in the preceeding 350 years. Thus it is likely that the next eruption will occur some time within the next decade. When that happens, MBARI's newly created bathymetric map will provide essential information for geologists trying to figure out the extent and volume of the latest flow from this amazingly active underwater volcano.

Media Contact

Kim Fulton-Bennett
kfb@mbari.org
831-775-1835

 @MBARI_news

http://www.mbari.org 

Kim Fulton-Bennett | EurekAlert!

Further reports about: AUV Bay Aquarium Research MBARI ROV seafloor sonar vehicles volcano

More articles from Earth Sciences:

nachricht World’s oldest known oxygen oasis discovered
18.01.2018 | Eberhard Karls Universität Tübingen

nachricht A close-up look at an uncommon underwater eruption
11.01.2018 | Woods Hole Oceanographic Institution

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>