Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MBARI researchers discover deepest high-temperature hydrothermal vents in Pacific Ocean

03.06.2015

In spring 2015, MBARI researchers discovered a large, previously unknown field of hydrothermal vents in the Gulf of California, about 150 kilometers (100 miles) east of La Paz, Mexico.

Lying more than 3,800 meters (12,500 feet) below the surface, the Pescadero Basin vents are the deepest high-temperature hydrothermal vents ever observed in or around the Pacific Ocean.


These delicate carbonate spires formed at an active vent site in the newly discovered Pescadero Basin hydrothermal field.

Courtesy of MBARI

They are also the only vents in the Pacific known to emit superheated fluids rich in both carbonate minerals and hydrocarbons. The vents have been colonized by dense communities of tubeworms and other animals unlike any other known vent communities in the in the eastern Pacific.

Like another vent field in the Gulf that MBARI discovered in 2012, the Pescadero Basin vents were initially identified in high-resolution sonar data collected by an autonomous underwater vehicle (AUV). MBARI's yellow, torpedo-shaped seafloor-mapping AUV spent two days flying about 50 meters above the bottom of the Basin, using sound beams to map the depth and shape of the seafloor.

The AUV team, led by MBARI engineer David Caress, pored over the detailed bathymetric map they created from the AUV data and saw a number of mounds and spires rising up from the seafloor. Data from the AUV also showed slightly warmer water over some of the spires, which implied that they might be active hydrothermal-vent chimneys.

A team of geologists led by David Clague then used a tethered underwater robot, the remotely operated vehicle (ROV) Doc Ricketts, to dive down to the seafloor, fly around the vents, and collect video and samples of rocks and hot water spewing from the chimneys.

Reflecting on the discovery, Clague commented, 'Before the AUV survey of Pescadero Basin, all we knew was that this area was really deep and filled with sediment. I was hoping to find a few outcrops of lava on the seafloor. But we got lucky. The vent field was right on the edge of our survey area, along a fault at the western edge of the basin.'

The AUV and ROV dives showed that the new field extends for at least 400 meters (one quarter mile) along this fault. Within this area the researchers found at least three active hydrothermal chimneys up to 12 meters (40 feet) tall, as well as dozens of low mounds that are most likely collapsed chimneys.

After his ROV dive, Clague noted, 'This site was not at all what I was expecting.' For one thing, the fragments of chimneys that the ROV brought back to the surface were quite different from those collected at other vents in the area. The Pescadero chimneys consisted entirely of light-colored carbonate minerals instead of the dark sulfide minerals that are abundant in hydrothermal chimneys elsewhere in the Gulf.

The Pescadero Basin is only the second place in the world where carbonate chimneys (instead of ones made primarily of sulfides) have been found in the deep sea. The other known location is the 'Lost City' vent field in the middle of the Atlantic Ocean, at a spot on the Mid-Atlantic Ridge.

The geologists also noticed that their rock samples smelled like diesel. They hypothesize that hot hydrothermal fluids migrating upward through the thick sediments of the Pescadero Basin 'cook' organic matter in the sediment, converting it into petroleum-like hydrocarbons -- a process that has been observed at several other vents in the Pacific. Hydrocarbons may provide nutrition for the unusual microbes that thrive at these vents.

After Clague's initial ROV dive, MBARI biologist Robert Vrijenhoek made three follow-up dives in the Pescadero Basin. His goal was to determine how and why animal communities at the Pescadero vents differed from those at other vent fields in the Gulf. Clague's and Vrijenhoek's dives revealed at least three different types of hydrothermal vents in the southern Gulf of California -- black smokers, carbonate chimneys, and hydrothermal seeps. Each environment supports its own unique animal community.

Black smokers form in active volcanic areas. One such area is on the Alarcón Rise, about 160 kilometers (100 miles) south of the Pescadero Basin, where MBARI researchers discovered several hydrothermal fields in 2012. On the Alarcón Rise, massive, dark-colored sulfide chimneys rise more than 37 meters (120 feet) above the lava-covered seafloor.

These chimneys gush extremely hot fluids (over 350 degrees Celsius, 660 degrees Fahrenheit) rich in heavy metals and sulfides. When the superheated fluids come in contact with near-freezing seawater, these minerals precipitate, forming dark, smoke-like plumes of particles. The 'black smoker' chimneys are often colonized by giant tubeworms in the genus Riftia, which grow over two meters (six feet) long, as well as limpets, crabs, squat lobsters, and Alvinella palmworms.

In contrast, the carbonate chimneys in the Pescadero Basin emerge from a flat, muddy seafloor, and are smaller and more delicate than black smokers. They emit fluids that are slightly cooler (250-290 degrees Celsius) and do not form dark, smoke-like plumes. The Pescadero Basin fluids are, however, rich in oil-like hydrocarbons that form dark, oily crusts on the light colored carbonate chimneys. They also support a very different group of animals, including dense colonies of tubeworms in the genus Oasisia.

In the third type of vent environment, 'hydrothermal seeps,' much cooler (less than 30-60 degrees Celsius) water trickles out of lava flows interleaved with seafloor mud. These seeps support an entirely different community of animals, including anemones, tubeworms in the genera Lamellibrachia and Escarpia, and broad, white mats of bacteria. In contrast to the Pescadero and Alarcón vents, each of which hosted a single species of deep-sea clams, the seeps support at least four different types of clams.

One thing that all of these communities have in common is that the dominant tubeworms and clams host specialized intracellular bacteria (symbionts) that allow these animals to exploit potentially toxic chemicals in the vent fluids as sources of nutrition. Vrijenhoek and his collaborators are trying to figure out if the different vent communities in the Gulf are controlled by differences in water depth, geochemistry, symbiotic bacteria, or perhaps other unanticipated factors.

The discovery of the Pescadero Basin hydrothermal field is just the latest example of how MBARI's extensive use of underwater robotics has accelerated the pace of scientific discovery in the deep sea. As Vrijenhoek noted, 'In the 1990s, following the discovery of plumes of warm water over the Mid-Atlantic Ridge, researchers from four countries searched for seven years to find what eventually became known as the 'rainbow vent field.' They were limited by inaccurate and imprecise bathymetric maps. This spring it took us only two days to do the same thing in the Pescadero Basin, using MBARI's high-precision seafloor-mapping AUV.'

###

Online version of this release, including maps and photographs of the new vent field: http://www.mbari.org/news/news_releases/2015/pescadero/pescadero-release.html

MBARI's YouTube video about the newly discovered vent field: https://youtu.be/8RhOrKrNv2M

Media Contact

Kim Fulton-Bennett
kfb@mbari.org
831-775-1835

 @MBARI_news

http://www.mbari.org 

Kim Fulton-Bennett | EurekAlert!

More articles from Earth Sciences:

nachricht Fossil coral reefs show sea level rose in bursts during last warming
19.10.2017 | Rice University

nachricht NASA finds newly formed tropical storm lan over open waters
17.10.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>