Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mapping glaciers

09.10.2015

Geologists supported by the Swiss National Science Foundation have developed a new technique for mapping an entire glacier. They could confirm a theoretical model that describes how climate change affects erosion.

Supported by the Swiss National Science Foundation (SNSF), a team led by Frédéric Herman of the University of Lausanne has mapped the Franz Josef Glacier in New Zealand.


A helicopter takes researcher Mattia Brughelli up to the Franz Josef Glacier in New Zealand. © Benjamin Lehmann

The researchers have developed a new technique to study more precisely the relationships between global warming, glacier movement and erosion of rocks located below the ice mass.

“The glacier is over 10 kilometres in length and fairly similar to those found in Switzerland,” explains Frédéric Herman. “We selected it because of its location on a tectonic fault, with contrasting geological layers that contain graphite, an element that provides us with information on erosion.” The results of the study have been published in Science (*).

Probing the geological history

The researchers used a combination of two techniques to map the glacier. First, stereoscopic satellite imagery allowed them to estimate the speed of movement at the surface. They were then able to extrapolate the speed at which the lower layer is sliding over the bedrock (between 30 and 300 metres each year).

At the same time, the study sought to quantify the intensity of erosion below the glacier – the extent to which the glacier erodes the rock below it as it slides along. The research team took an indirect approach, as Frédéric Herman explains:

“We studied the crystalline structure of the graphite – carbon formed from fossilised organic matter – contained within the rock flour retrieved downstream of the glacier. It provides us with quite precise information on the conditions at the time the graphite was formed, in particular its temperature, which was between 300 and 700 degrees. When we compare this with samples taken from around the glacier, we can work out the origin of the flour. Since the quantity of flour is directly linked to the rate of erosion, it is possible to draw a map showing the intensity of erosion beneath the glacier.”

The researchers used the Raman spectroscopy technique to analyse the crystalline structure of the material. “Until now, geologists relied on isotope analysis, which requires very heavy equipment,” continues the researcher. “It could take years just to obtain forty samples. With our technique, our Master’s student Mattia Brughelli successfully analysed 4000 samples in two weeks, and then produced a very precise map of the glacier with a resolution of 1 metre.”

A theory validated

The measurements confirm a theoretical model that was proposed in 1979, predicting that erosion is not simply proportional to the speed of movement of the glacier, but is related to its square. “In the last few decades, we have been able to observe that glacier movement is accelerating,” says Frédéric Herman.

“Our model indicates that erosion will intensify in a non-linear fashion with global warming.” That means there will be increased sediment levels in alpine streams, which will increase the risk of debris flow, a mix of water and mud. “Our work shows that natural systems can be very perceptible to changes in the environment, even mountains.”

The study was realised in cooperation with the French National Museum of Natural History, the Californian Institute of Technology and the Institute of Geological and Nuclear Survey Science in New Zealand.

(*) F. Herman et al. (2015). Erosion by an Alpine glacier, Science, vol. 350, 6257, doi/10.1126/science.aab2386

Contact
Professor Frédéric Herman
Institute of Earth Surface Dynamics
University of Lausanne
1015 Lausanne
Tel: +41 (0)21 692 43 80 and +41 (0)79 608 32 98
E-mail: Frederic.Herman@unil.ch

Weitere Informationen:

http://www.snf.ch/en/researchinFocus/newsroom/Pages/news-151009-press-release-ma...

Kommunikation | idw - Informationsdienst Wissenschaft

More articles from Earth Sciences:

nachricht A close-up look at an uncommon underwater eruption
11.01.2018 | Woods Hole Oceanographic Institution

nachricht Environmental history told by sludge: Global warming lets the dead zones in the Black Sea grow
10.01.2018 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

White graphene makes ceramics multifunctional

16.01.2018 | Materials Sciences

Breaking bad metals with neutrons

16.01.2018 | Materials Sciences

ISFH-CalTeC is “designated test centre” for the confirmation of solar cell world records

16.01.2018 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>