Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mapping glaciers

09.10.2015

Geologists supported by the Swiss National Science Foundation have developed a new technique for mapping an entire glacier. They could confirm a theoretical model that describes how climate change affects erosion.

Supported by the Swiss National Science Foundation (SNSF), a team led by Frédéric Herman of the University of Lausanne has mapped the Franz Josef Glacier in New Zealand.


A helicopter takes researcher Mattia Brughelli up to the Franz Josef Glacier in New Zealand. © Benjamin Lehmann

The researchers have developed a new technique to study more precisely the relationships between global warming, glacier movement and erosion of rocks located below the ice mass.

“The glacier is over 10 kilometres in length and fairly similar to those found in Switzerland,” explains Frédéric Herman. “We selected it because of its location on a tectonic fault, with contrasting geological layers that contain graphite, an element that provides us with information on erosion.” The results of the study have been published in Science (*).

Probing the geological history

The researchers used a combination of two techniques to map the glacier. First, stereoscopic satellite imagery allowed them to estimate the speed of movement at the surface. They were then able to extrapolate the speed at which the lower layer is sliding over the bedrock (between 30 and 300 metres each year).

At the same time, the study sought to quantify the intensity of erosion below the glacier – the extent to which the glacier erodes the rock below it as it slides along. The research team took an indirect approach, as Frédéric Herman explains:

“We studied the crystalline structure of the graphite – carbon formed from fossilised organic matter – contained within the rock flour retrieved downstream of the glacier. It provides us with quite precise information on the conditions at the time the graphite was formed, in particular its temperature, which was between 300 and 700 degrees. When we compare this with samples taken from around the glacier, we can work out the origin of the flour. Since the quantity of flour is directly linked to the rate of erosion, it is possible to draw a map showing the intensity of erosion beneath the glacier.”

The researchers used the Raman spectroscopy technique to analyse the crystalline structure of the material. “Until now, geologists relied on isotope analysis, which requires very heavy equipment,” continues the researcher. “It could take years just to obtain forty samples. With our technique, our Master’s student Mattia Brughelli successfully analysed 4000 samples in two weeks, and then produced a very precise map of the glacier with a resolution of 1 metre.”

A theory validated

The measurements confirm a theoretical model that was proposed in 1979, predicting that erosion is not simply proportional to the speed of movement of the glacier, but is related to its square. “In the last few decades, we have been able to observe that glacier movement is accelerating,” says Frédéric Herman.

“Our model indicates that erosion will intensify in a non-linear fashion with global warming.” That means there will be increased sediment levels in alpine streams, which will increase the risk of debris flow, a mix of water and mud. “Our work shows that natural systems can be very perceptible to changes in the environment, even mountains.”

The study was realised in cooperation with the French National Museum of Natural History, the Californian Institute of Technology and the Institute of Geological and Nuclear Survey Science in New Zealand.

(*) F. Herman et al. (2015). Erosion by an Alpine glacier, Science, vol. 350, 6257, doi/10.1126/science.aab2386

Contact
Professor Frédéric Herman
Institute of Earth Surface Dynamics
University of Lausanne
1015 Lausanne
Tel: +41 (0)21 692 43 80 and +41 (0)79 608 32 98
E-mail: Frederic.Herman@unil.ch

Weitere Informationen:

http://www.snf.ch/en/researchinFocus/newsroom/Pages/news-151009-press-release-ma...

Kommunikation | idw - Informationsdienst Wissenschaft

More articles from Earth Sciences:

nachricht More than 100 years of flooding and erosion in 1 event
28.03.2017 | Geological Society of America

nachricht Satellites reveal bird habitat loss in California
28.03.2017 | Duke University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>