Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Malaspina discovers the key to the long-term storage of DOC in the deep ocean

24.03.2015

Microorganisms do not degrade this material because each of the compounds that make it up are found in too low concentrations

Researchers from the Malaspina Expedition have made strides in the understanding of the mechanisms governing the persistence of dissolved organic carbon (DOC) for hundreds or thousands of years in the deep ocean. Most of this material is below 1,000 meters deep, but it is not degraded by bacteria.


This is a CTD oceanography instrument used by researchers from the Malaspina Expedition.

Credit: CSIC / JOAN COSTA

Until now, it was thought that it consisted of non-degradable chemical compounds, but this study shows that it actually comprises very low concentrations of thousands of readily degradable compounds. The finding, published in the latest issue of the Science journal, provides new keys to further deepen the understanding of the regulation of the carbon cycle and the global climate.

The ocean contains an enormous amount of carbon in the form of dissolved organic matter. Its volume, about 700 billion kilograms, is comparable to all the carbon dioxide accumulated in the atmosphere, or more than 200 times greater than the sum of all the carbon contained in marine organisms.

Jesus Maria Arrieta, researcher from the Malaspina Expedition, states: "It is estimated that between 30% and 50% of the production of organic matter from the ocean, which, in turn, is half the production of the global organic matter, is released in the form of DOC in the ocean. Recognizing the mechanisms that enable this dissolved organic material to be persistent in the deep ocean is crucial to understand the regulation of the carbon cycle and the global climate".

The circumnavigation, performed by the Hesperides vessel as part of the Malaspina project, was a unique opportunity to obtain samples from the Atlantic and Pacific oceans. For this study, scientists have used samples of dissolved organic material from the deep ocean obtained at different depths between 1,000 and 4,000 meters.

Up to present, it was thought that this organic material dissolved in the deep ocean was resistant to microbial degradation as it consists of recalcitrant or highly resistant chemical structures. According to this new study, if bacteria can not cope with the thousands of different molecules that make up the carbon is because they are found in a very low concentration. The expenditure of energy by bacteria to use each of these molecules can not be compensated by the low concentration available, which prevents its degradation.

CSIC researcher emphasizes: "By offering concentrated organic material from the deep water to bacteria, we have observed a stimulation of growth at higher concentrations, i.e., this organic material from the deep ocean, hitherto considered to be little or not degradable at all, is actually readily degradable for the deep-ocean microorganisms. The reason is that this large amount of organic carbon is a mixture of "leftovers" from easily degradable materials, but their use is limited by the existing low concentrations of each compound".

Mechanisms governing the climate

According to previous studies, an increase in the concentration of DOC in the deep ocean in the past might have entailed a removal of CO2 from the atmosphere and a cooling effect on the planet. Arrieta adds: "It has been recently proposed to attempt to promote the microbial production of recalcitrant natural compounds in order to sequester carbon dioxide from the atmosphere and store it in the ocean. Our work indicates that the potential of this proposal would be very limited".

###

The Malaspina Expedition is a Consolider-Ingenio 2010 project managed by CSIC and funded by the Spanish Ministry of Economy and Competitiveness. Malaspina comprises about 50 research groups, including 27 Spanish groups from CSIC, the Spanish Institute of Oceanography (IEO), 16 Spanish universities, a museum, the research foundation AZTI-Tecnalia, and the Spanish Navy. The total funding, in which CSIC, IEO, BBVA Foundation, AZTI-TEcnalia (as well as several Spanish universities and public research organizations) have collaborated, is about 6 millions euros.

Media Contact

Alda Ólafsson
alda.olafsson@csic.es
0034-915-681-499

 @CSIC

http://www.csic.es 

Alda Ólafsson | EurekAlert!

More articles from Earth Sciences:

nachricht Fossil coral reefs show sea level rose in bursts during last warming
19.10.2017 | Rice University

nachricht NASA finds newly formed tropical storm lan over open waters
17.10.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>