Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Low-oxygen 'dead zones' in North Pacific linked to past ocean warming

23.11.2015

A new study has found a link between abrupt ocean warming at the end of the last ice age and the sudden onset of low-oxygen, or hypoxic, conditions that led to vast marine dead zones.

Results of the research, which was funded by the National Science Foundation (NSF), are published today in the journal Nature.


Alaska glaciers on-the-move: here, Hubbard Glacier during a calving event.

Credit: SE Alaska Scientific Party

"This works tackles a long-standing debate about what causes expansion of Oxygen Minimum Zones, also known as dead zones, in the oceans," said Candace Major, a program director in NSF's Division of Ocean Sciences. "The results demonstrate a link between warming surface temperatures and dead zones at great depths. The findings also show that the response time between warming and dead zone expansion is quite fast."

Large-scale warming events at about 14,700, and again 11,500, years ago occurred rapidly and triggered loss of oxygen in the North Pacific, raising concern that low-oxygen areas will expand again as the oceans warm in the future.

Anomalous warmth that occurred recently in the Northeastern Pacific Ocean and the Bering Sea--dubbed "The Blob"--is of a scale similar to events documented in the geologic record. If such warming is sustained, oxygen loss becomes more likely.

Although many scientists believe that a series of low-oxygen "dead zones" in the Pacific Ocean off Oregon and Washington during the last decade may be caused by ocean warming, evidence confirming that link has been sparse.

Clear connection: Past ocean warming and dead zones

The new study, however, found a clear connection between two historic intervals of abrupt ocean warming that ended the last ice age with an increase in the flux of marine plankton sinking to the seafloor, ultimately leading to a sudden onset of low-oxygen conditions, or hypoxia.

"Our study reveals a strong link between ocean warming, loss of oxygen and an ecological shift to favor diatom production," said paper lead author Summer Praetorius of the Carnegie Institution for Science. "During each warming event, the transition to hypoxia occurred abruptly and persisted for about 1,000 years, suggesting a feedback that sustained or amplified hypoxia."

Warmer water, by itself, is not sufficient to cause diatom blooms, nor hypoxia, the researchers note.

Just as warming soda loses its fizzy gas, warmer seawater contains less dissolved oxygen, and this can start the oxygen decline. But it isn't until accelerated blooming of microscopic diatoms--which have large shells and tend to sink more rapidly than other smaller types of plankton--that de-oxygenation is increased.

Diatoms are known to thrive in warm, stratified water, but they also require sources of nutrients and iron, according to Alan Mix of Oregon State University, a co-author of the paper.

There are some competing effects, and the final story depends on which one wins. Warming may, for a time, decrease mixing from below, but if the major nutrients are there, as they are in the high North Pacific, then warming favors plankton growth.

"The high-latitude North Pacific is rich in common nutrients such as nitrate and phosphate, but it is poor in iron and that seems to be the key," Mix said. "A partial loss of oxygen causes a chemical reaction that releases iron previously trapped in continental margin sediments. That iron then fuels diatoms, which bloom, die and sink to the seafloor, consuming oxygen along the way."

Ocean response times a concern

The concern is how rapidly the ocean may respond, the researchers said.

"Many people have assumed that climate change effects will be gradual and predictable," Mix said, "but this study shows that the ecological consequences of climate change can be massive and can occur pretty fast with little warning."

Because the competing effects of mixing and iron may happen on different timescales, the exact sequence of events may be confusing.

On the scale of a few years, mixing may win, but on the scale of decades to centuries, the bigger effects kick into gear. The geologic record studied by the scientists emphasized these longer scales.

The new discovery was the result of a decades-long effort by numerous researchers at Oregon State University to collect marine sediment cores from the North Pacific, creating comprehensive, high-resolution records of climate change in the region.

The temperature records came from trace quantities of organic molecules, called biomarkers, produced by plankton.

In addition to "The Blob" of unusually warm ocean temperatures seen across the North Pacific, this year has had a record-breaking algae bloom dominated by a certain species of diatom.

"While it's too soon to know how this event ties into the long-term climate patterns that will emerge in the future," Praetorius said, "current conditions seem eerily reminiscent of past conditions that gave way to extended periods of hypoxia."

Media Contact

Cheryl Dybas
cdybas@nsf.gov
703-292-7734

 @NSF

http://www.nsf.gov 

Cheryl Dybas | EurekAlert!

Further reports about: Ocean Pacific Ocean dead zones diatom ecological nutrients ocean warming warming events

More articles from Earth Sciences:

nachricht Modeling magma to find copper
13.01.2017 | Université de Genève

nachricht What makes erionite carcinogenic?
13.01.2017 | Friedrich-Schiller-Universität Jena

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>