Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Long-term Research: Loss of Diversity Near Melting Coastal Glaciers

16.11.2015

Sedimentation is impacting an entire ecosystem on the seafloor

Melting glaciers are causing a loss of species diversity among benthos in the coastal waters off the Antarctic Peninsula, impacting an entire seafloor ecosystem.


The glacier's meltwater (Potter Cove, King George Island, Antarctica)

Photo: Alfred Wegener Institute / Anders Torstensson


Benthos communities (Potter Cove, Antarctica)

Photo: Alfred Wegener Institute / Christian Lagger (CONICET)

This has been verified in the course of repeated research dives, the results of which were recently published by experts from Argentina, Germany and Great Britain and the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) in a study in the journal Science Advances.

The scientists believe increased levels of suspended sediment in the water to be the cause of the dwindling biodiversity in the coastal region. This occurs when the effects of global warming lead glaciers near the coast to begin melting, as a result of which large quantities of sediment are carried into the seawater.

Over the past five decades, temperatures have risen nearly five times as rapidly on the western Antarctic Peninsula than the global average. Yet the impacts of the resulting retreat of glaciers on bottom-dwelling organisms (benthos) remain unclear.

In response, researchers at Dallmann Laboratory are now mapping and analysing the benthos in Potter Cove, located on King George Island off the western Antarctic Peninsula. Here the Alfred Wegener Institute and the Argentine Antarctic Institute (IAA) operate Dallmann Laboratory as part of the Argentinian Carlini Station. Research concerning benthic flora and fauna has been part of the laboratory’s long-term monitoring programme for more than two decades.

In 1998, 2004 and 2010 divers photographed the species communities at three different stations and at different water depths: the first, near the glacier’s edge; the second, an area less directly influenced by the glacier; and the third, in the cove’s minimally affected outer edge. They also recorded the sedimentation rates, water temperatures and other oceanographic parameters at the respective stations, so that they could correlate the biological data with these values.

Their findings: some species are extremely sensitive to higher sedimentation rates. “Particularly tall-growing ascidians like some previously dominant sea squirt species can’t adapt to the changed conditions and die out, while their shorter relatives can readily accommodate the cloudy water and sediment cover,” explains Dr Doris Abele, an AWI biologist and co-author of the study, adding, “The loss of important species is changing the coastal ecosystems and their highly productive food webs, and we still can’t predict the long-term consequences.”

“It was essential to have a basis of initial data, which we could use for comparison with the changes. In the Southern Ocean we began this work comparatively late,” says the study’s first author, marine ecologist Ricardo Sahade from the University of Cordoba and Argentina’s National Scientific and Technical Research Council CONICET, who is leading the benthic long-term series. “Combining this series of observations, accompanying ecological research on important Antarctic species, and mathematical modelling allows us to forecast the changes to the ecosystem in future scenarios,” adds co-author Fernando Momo from Argentina’s National University of General Sarmiento.

Dallmann Laboratory at Carlini Station (formerly Jubany Station) was first founded in 1994 as a joint facility by the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) and the Argentine Antarctic Institute (IAA). It has since established itself as a trusted research platform for numerous international and interdisciplinary network programmes, which were supported by the European Union and Argentinian funding organisations throughout the past decade.

“Sustainable long-term research and coordinated, interdisciplinary Antarctic research programmes are essential in order to explain the local changes in coastal ecosystems in connection with global warming,” says Doris Abele. She coordinates the ongoing EU project IMCONet (http://www.imconet.eu) at Dallmann Laboratory, just as she did for previous projects like IMCOAST (http://www.imcoast.org), in which the research underlying the current study was conducted. In addition to our Argentinian partners, researchers from the British Antarctic Survey and the University of Oldenburg also participated in the Science Advances Study.

Original publication:
Ricardo Sahade, Cristian Lagger, Luciana Torre, Fernando Momo, Patrick Monien, Irene Schloss, David K.A. Barnes, Natalia Servetto, Soledad Tarantelli, Marcos Tatián, Nadia Zamboni, Doris Abele: Climate change and glacier retreat drive shifts in an Antarctic benthic ecosystem. Science Advances 2015; DOI: 10.1126/sciadv.1500050

EMBARGOED until Friday, 13 November 2015, 8:00 pm CET, 7:00 London time, 2:00 pm US EST

Notes for Editors:
Printable images can be found following this link: http://multimedia.awi.de/medien/pincollection.jspx?collectionName=%7B6139386e-90...

Your contact partners are Dr Doris Abele (she is travelling at the moment, please send an email to: Doris.Abele(at)awi.de), and at the Department of Communications and Media Relations Dr Folke Mehrtens (phone 0049 471 4831-2007; e-mail: Folke.Mehrtens(at)awi.de).

The Alfred Wegener Institute conducts research in the Arctic, Antarctic and in the high and mid-latitude oceans. The Institute coordinates German polar research and provides important infrastructure such as the research icebreaker Polarstern and research stations in the Arctic and Antarctic to the national and international scientific world. The Alfred Wegener Institute is one of the 18 research centres of the Helmholtz Association, the largest scientific organisation in Germany.

Ralf Röchert | idw - Informationsdienst Wissenschaft

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

Decoding cement's shape promises greener concrete

08.12.2016 | Materials Sciences

Will Earth still exist 5 billion years from now?

08.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>