Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Local destabilization can cause complete loss of West Antarctica’s ice masses

03.11.2015

The huge West Antarctic ice sheet would collapse completely if the comparatively small Amundsen Basin is destabilized, scientists of the Potsdam Institute for Climate Impact Research find. A full discharge of ice into the ocean is calculated to yield about 3 meters of sea-level rise. Recent studies indicated that this area of the ice continent is already losing stability, making it the first element in the climate system about to tip.

The new publication for the first time shows the inevitable consequence of such an event. According to the computer simulations, a few decades of ocean warming can start an ice loss that continues for centuries or even millennia.


A few decades of ocean warming could trigger complete ice loss in Western Antarctica. More info: Fig. 1 in the paper

“What we call the eternal ice of Antarctica unfortunately turns out not to be eternal at all,” says Johannes Feldmann, lead author of the study to be published in the Proceedings of the National Academy of Sciences (PNAS). “Once the ice masses get perturbed, which is what is happening today, they respond in a non-linear way: there is a relatively sudden breakdown of stability after a long period during which little change can be found.”

“A few decades can kickstart change going on for millennia”

This is what is expressed by the concept of tipping elements: pushed too far, they fall over into another state. This also applies to, for instance, the Amazon rainforest, and the Indian Monsoon system. In parts of Antarctica, the natural ice-flow into the ocean would substantially and permanently increase.

Ocean warming is slowly melting the ice shelves from beneath, those floating extensions of the land ice. Large portions of the West Antarctic ice sheet are grounded on bedrock below sea level and generally slope downwards in an inland direction. Ice loss can make the grounding line retreat, thereby exposing more and more ice to the slightly warmer ocean water – further accelerating the retreat.

“In our simulations 60 years of melting at the presently observed rate are enough to launch a process which is then unstoppable and goes on for thousands of years,” Feldmann says. This would eventually yield at least 3 meters of sea-level rise. “This certainly is a long process,” Feldmann says. “But it’s likely starting right now.”

The greenhouse-gas emission factor

“So far we lack sufficient evidence to tell whether or not the Amundsen ice destabilization is due to greenhouse gases and the resulting global warming,” says co-author and IPCC sea-level expert Anders Levermann, also from the Potsdam Institute. “But it is clear that further greenhouse-gas emission will heighten the risk of an ice collapse in West Antarctica and more unstoppable sea-level rise.”

“That is not something we have to be afraid of, because it develops slowly,” concludes Levermann. “But it might be something to worry about, because it would destroy our future heritage by consuming the cities we live in – unless we reduce carbon emission quickly.”

Article: Feldmann, J., Levermann, A. (2015): Collapse of the West Antarctic Ice Sheet after local destabilization of the Amundsen Basin. Proceedings of the National Academy of Sciences (PNAS, Online Early Edition) [DOI: 10.1073/pnas.1512482112]

Weblink to the article once it is published: www.pnas.org/cgi/doi/10.1073/pnas.1512482112

For further information please contact:
PIK press office
Phone: +49 331 288 25 07
E-Mail: press@pik-potsdam.de
Twitter: @PIK_Climate

Mareike Schodder | Potsdam-Institut für Klimafolgenforschung
Further information:
http://www.pik-potsdam.de

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>