Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Little-known quake, tsunami hazards lurk offshore of Southern California

01.06.2015

While their attention may be inland on the San Andreas Fault, residents of coastal Southern California could be surprised by very large earthquakes - and even tsunamis - from several major faults that lie offshore, a new study finds.

The latest research into the little known, fault-riddled, undersea landscape off of Southern California and northern Baja California has revealed more worrisome details about a tectonic train wreck in the Earth's crust with the potential for magnitude 7.9 to 8.0 earthquakes.


This map shows the California Borderland and its major tectonic features, as well as the locations of earthquakes greater than Magnitude 5.5. The dashed box shows the area of the new study. Large arrows show relative plate motion for the Pacific-North America fault boundary. The abbreviations stand for the following: BP = Banning Pass, CH = Chino Hills, CP = Cajon Pass, LA = Los Angeles, PS = Palm Springs, V = Ventura; ESC = Santa Cruz Basin; ESCBZ = East Santa Cruz Basin Fault Zone; SCI = Santa Catalina Island; SCL = San Clemente Island; SMB = Santa Monica Basin; SNI = San Nicolas Island.

Credit: Mark Legg

The new study supports the likelihood that these vertical fault zones have displaced the seafloor in the past, which means they could send out tsunami-generating pulses towards the nearby coastal mega-city of Los Angeles and neighboring San Diego.

"We're dealing with continental collision," said geologist Mark Legg of Legg Geophysical in Huntington Beach, California, regarding the cause of the offshore danger. "That's fundamental. That's why we have this mess of a complicated logjam."

Legg is the lead author of the new analysis accepted for publication in the Journal of Geophysical Research: Earth Surface, a journal of the American Geophysical Union. He is also one of a handful of geologists who have been trying for decades to piece together the complicated picture of what lies beyond Southern California's famous beaches.

The logjam Legg referred to is composed of blocks of the Earth's crust caught in the ongoing tectonic battle between the North American tectonic plate and the Pacific plate. The blocks are wedged together all the way from the San Andreas Fault on the east, to the edge of the continental shelf on the west, from 150 to 200 kilometers (90 to 125 miles) offshore.

These chunks of crust get squeezed and rotated as the Pacific plate slides northwest, away from California, relative to the North American plate. The mostly underwater part of this region is called the California Continental Borderland, and includes the Channel Islands.

By combining older seafloor data and digital seismic data from earthquakes along with 4,500 kilometers (2,796 miles) of new seafloor depth measurements, or bathymetry, collected in 2010, Legg and his colleagues were able to take a closer look at the structure of two of the larger seafloor faults in the Borderland: the Santa Cruz-Catalina Ridge Fault and the Ferrelo Fault. What they were searching for are signs, like those seen along the San Andreas, that indicate how much the faults have slipped over time and whether some of that slippage caused some of the seafloor to thrust upwards.

What they found along the Santa Cruz-Catalina Ridge Fault are ridges, valleys and other clear signs that the fragmented, blocky crust has been lifted upward, while also slipping sideways like the plates along the San Andreas Fault do. Further out to sea, the Ferrelo Fault zone showed thrust faulting - which is an upwards movement of one side of the fault. The vertical movement means that blocks of crust are being compressed as well as sliding horizontally relative to each other-what Legg describes as "transpression."

Compression comes from the blocks of the Borderland being dragged northwest, but then slamming into the roots of the Transverse Ranges - which are east-west running mountains north and west of Los Angeles. In fact, the logjam has helped build the Transverse Ranges, Legg explained.

"The Transverse Ranges rose quickly, like a mini Himalaya," Legg said.

The real Himalaya arose from a tectonic-plate collision in which the crumpled crust on both sides piled up into fast-growing, steep mountains rather than getting pushed down into Earth's mantle as happens at some plate boundaries.

As Southern California's pile-up continues, the plate movements that build up seismic stress on the San Andreas are also putting stress on the long Santa Cruz-Catalina Ridge and Ferrelo Faults. And there is no reason to believe that those faults and others in the Borderlands can't rupture in the same manner as the San Andreas, said Legg.

"Such large faults could even have the potential of a magnitude 8 quake," said geologist Christopher Sorlien of the University of California at Santa Barbara, who is not a co-author on the new paper.

"This continental shelf off California is not like other continental shelves - like in the Eastern U.S.," said Sorlien.

Whereas most continental shelves are about twice as wide and inactive, like that off the U.S. Atlantic coast, the California continental shelf is very narrow and is dominated by active faults and tectonics. In fact, it's unlike most continental shelves in the world, he said. It's also one of the least well mapped and understood. "It's essentially terra incognita."

"This is one of the only parts of the continental shelf of the 48 contiguous states that didn't have complete ... high-resolution bathymetry years ago," Sorlien said.

And that's why getting a better handle on the hazards posed by the Borderland's undersea faults has been long in coming and slow to catch on, even among earth scientists, he said.

NOAA was working on complete high-resolution bathymetry of the U.S. Exclusive Economic Zone - the waters within 200 miles of shore - until the budget was cut, said Legg. That left out Southern California and left researchers like himself using whatever bits and pieces of smaller surveys to assemble a picture of what's going on in the Borderland, he explained.

"We've got high resolution maps of the surface of Mars," Legg said, "yet we still don't have decent bathymetry for our own backyard."

###

The American Geophysical Union is dedicated to advancing the Earth and space sciences for the benefit of humanity through its scholarly publications, conferences, and outreach programs. AGU is a not-for-profit, professional, scientific organization representing more than 60,000 members in 139 countries. Join the conversation on Facebook, Twitter, YouTube, and our other social media channels.

Media Contact

Nanci Bompey
nbompey@agu.org
202-777-7524

 @theagu

http://www.agu.org 

Nanci Bompey | EurekAlert!

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>