Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Likely cause of 2013-14 earthquakes: Combination of gas field fluid injection and removal

22.04.2015

SMU-led seismology team reveals Azle, Texas findings

A seismology team led by Southern Methodist University (SMU), Dallas, finds that high volumes of wastewater injection combined with saltwater (brine) extraction from natural gas wells is the most likely cause of earthquakes occurring near Azle, Texas, from late 2013 through spring 2014.


Several natural and man-made factors can influence the subsurface stress regime resulting in earthquakes. Natural ones include intraplate stress changes related to plate tectonics and natural water table or lake level variations caused by changing weather patterns or water drainage patterns over time, or advance or retreat of glaciers. Man-made include human-generated changes to the water table, including dam construction, and industrial activities involving the injection or removal of fluids from the subsurface.

Credit: Nature Communications/SMU

In an area where the seismology team identified two intersecting faults, they developed a sophisticated 3D model to assess the changing fluid pressure within a rock formation in the affected area. They used the model to estimate stress changes induced in the area by two wastewater injection wells and the more than 70 production wells that remove both natural gas and significant volumes of salty water known as brine.

Conclusions from the modeling study integrate a broad-range of estimates for uncertain subsurface conditions. Ultimately, better information on fluid volumes, flow parameters, and subsurface pressures in the region will provide more accurate estimates of the fluid pressure along this fault.

"The model shows that a pressure differential develops along one of the faults as a combined result of high fluid injection rates to the west and high water removal rates to the east," said Matthew Hornbach, SMU associate professor of geophysics. "When we ran the model over a 10-year period through a wide range of parameters, it predicted pressure changes significant enough to trigger earthquakes on faults that are already stressed."

Model-predicted stress changes on the fault were typically tens to thousands of times larger than stress changes associated with water level fluctuations caused by the recent Texas drought.

"What we refer to as induced seismicity - earthquakes caused by something other than strictly natural forces - is often associated with subsurface pressure changes," said Heather DeShon, SMU associate professor of geophysics. "We can rule out stress changes induced by local water table changes. While some uncertainties remain, it is unlikely that natural increases to tectonic stresses led to these events."

DeShon explained that some ancient faults in the region are more susceptible to movement - "near critically stressed" - due to their orientation and direction. "In other words, surprisingly small changes in stress can reactivate certain faults in the region and cause earthquakes," DeShon said.

The study, "Causal Factors for Seismicity near Azle, Texas," has been published online in the journal Nature Communications at http://nature.com/articles/doi:10.1038/ncomms7728.

The study was produced by a team of scientists from SMU's Department of Earth Sciences in Dedman College of Humanities and Sciences, the U.S. Geological Survey, the University of Texas Institute for Geophysics and the University of Texas Department of Petroleum and Geosystems Engineering. SMU scientists Hornbach and DeShon are the lead authors.

SMU seismologists have been studying earthquakes in North Texas since 2008, when the first series of felt tremors hit near DFW International Airport between Oct. 30, 2008, and May 16, 2009. Next came a series of quakes in Cleburne between June 2009 and June 2010, and this third series in the Azle-Reno area northwest of Fort Worth occurred between November 2013 and January 2014. The SMU team also is studying an ongoing series of earthquakes in the Irving-Dallas area that began in April 2014.

In both the DFW sequence and the Cleburne sequence, the operation of injection wells used in the disposal of natural gas production fluids was listed as a possible cause of the seismicity. The introduction of fluid pressure modeling of both industry activity and water table fluctuations in the Azle study represents the first of its kind, and has allowed the SMU team to move beyond assessment of possible causes to the most likely cause identified in this report.

Prior to the DFW Airport earthquakes in 2008, an earthquake large enough to be felt had not been reported in the North Texas area since 1950. The North Texas earthquakes of the last seven years have all occurred in areas developed for natural gas extraction from a geologic formation known as the Barnett Shale. The Texas Railroad Commission reports that production in the Barnett Shale grew exponentially from 216 million cubic feet a day in 2000, to 4.4 billion cubic feet a day in 2008, to a peak of 5.74 billion cubic feet of gas a day in 2012.

See that report at:

http://bit.ly/1GfxLEG

While the SMU Azle study adds to the growing body of evidence connecting some injection wells and, to a lesser extent, some oil and gas production to induced earthquakes, SMU's team notes that there are many thousands of injection and/or production wells that are not associated with earthquakes.

The area of study addressed in the report is in the Newark East Gas Field (NEGF), north and east of Azle. In this field, hydraulic fracturing is applied to loosen and extract gas trapped in the Barnett Shale, a sedimentary rock formation formed approximately 350 million years ago. The report explains that along with natural gas, production wells in the Azle area of the NEGF can also bring to the surface significant volumes of water from the highly permeable Ellenburger Formation - both naturally occurring brine as well as fluids that were introduced during the fracking process.

Subsurface fluid pressures are known to play a key role in causing seismicity. A primer produced by the U.S. Department of Energy explains the interplay of fluids and faults:

"The fluid pressure in the pores and fractures of the rocks is called the 'pore pressure.' The pore pressure acts against the weight of the rock and the forces holding the rock together (stresses due to tectonic forces). If the pore pressures are low (especially compared to the forces holding the rock together), then only the imbalance of natural in situ earth stresses will cause an occasional earthquake. If, however, pore pressures increase, then it would take less of an imbalance of in situ stresses to cause an earthquake, thus accelerating earthquake activity. This type of failure...is called shear failure. Injecting fluids into the subsurface is one way of increasing the pore pressure and causing faults and fractures to "fail" more easily, thus inducing an earthquake. Thus, induced seismicity can be caused by injecting fluid into the subsurface or by extracting fluids at a rate that causes subsidence and/or slippage along planes of weakness in the earth."

All seismic waveform data used in the compilation of the report are publically available at the IRIS Data Management Center. Wastewater injection, brine production and surface injection pressure data are publicly available at the Texas Railroad Commission (TRC). Craig Pearson at the TRC, Bob Patterson from the Upper Trinity Groundwater Conservation District; scientists at XTO Energy, ExxonMobil, MorningStar Partners and EnerVest provided valuable discussions and, in some instances, data used in the completion of the report.

"This report points to the need for even more study in connection with earthquakes in North Texas," said Brian Stump, SMU's Albritton Chair in Earth Sciences. "Industry is an important source for key data, and the scope of the research needed to understand these earthquakes requires government support at multiple levels."

###

SMUResearch.com on Twitter, http://twitter.com/smuresearch.

For more information, http://www.smuresearch.com.

SMU is a nationally ranked private university in Dallas founded 100 years ago. Today, SMU enrolls nearly 11,000 students who benefit from the academic opportunities and international reach of seven degree-granting schools. For more information see http://www.smu.edu.

SMU has an uplink facility located on campus for live TV, radio, or online interviews. To speak with an SMU expert or book an SMU guest in the studio, call SMU News & Communications at 214-768-7664.

Media Contact

Kim Cobb
cobbk@smu.edu
214-768-7654

 @smu

http://www.smu.edu 

Kim Cobb | EurekAlert!

Further reports about: Department SMU earthquake earthquakes fluids gas production natural gas pressure stresses water table

More articles from Earth Sciences:

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

nachricht Modeling magma to find copper
13.01.2017 | Université de Genève

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>