Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Less ice, more water in Arctic Ocean by 2050s

03.11.2015

By the 2050s, parts of the Arctic Ocean once covered by sea ice much of the year will see at least 60 days a year of open water, according to a new modeling study led by researchers at the University of Colorado Boulder.

"We hear all the time about how sea ice extent in the Arctic is going down," says Katy Barnhart, who led the study while at CU-Boulder's Institute for Arctic and Alpine Research (INSTAAR). "That's an important measurement if you are trying to understand broad impacts of climate change in the Arctic, but it doesn't tell us about how the changes in the sea ice in the Arctic are going to affect specific places."


The Arctic Ocean will experience more days of open water by the 2050s.

Photo by Katy Barnhart

So Barnhart and her colleagues, including CIRES Fellow Jennifer Kay and INSTAAR Fellow Irina Overeem, set out to investigate the very local impacts of open water expansion patterns in the Arctic. Their work is published today in the journal Nature Climate Change.

The researchers used climate simulations from the National Center for Atmospheric Research-based Community Earth System Model to see how the number of open water, or sea-ice-free, days change from 1850 to 2100 in our planet's northernmost ocean. They also wanted to understand when open water conditions in specific locations would be completely different from preindustrial conditions.

Because most economic activity in the Arctic is along the coastline, the team focused on four coastal locations that demonstrated the range of sea ice change: Drew Point, along Alaska's North Slope; the Laptev Sea, along Siberia's northern coast; Perry Channel in the Canadian Arctic Archipelago (part of the Northwest Passage route); and Arctic Ocean regions east of Svalbard, Norway.

For example, at Drew Point, open water is already shifting from preindustrial conditions. Once present about 50 days a year on average (~1900-2000), open water is now present about 100 days a year. By the 2070s, the modeling study concludes, there could be close to 200 days a year with no sea ice at Drew Point, which is likely to worsen coastal erosion.

"We wanted to highlight places that had interesting or different stories with respect to the patterns of Arctic Ocean, atmosphere, and sea ice motion--things like coastal erosion or connections to potential sea routes," said Barnhart, now a postdoctoral fellow at the Annenberg Public Policy Center of the University of Pennsylvania. "Since we don't expect the impacts of Arctic sea ice loss to be exactly the same in Alaska as in Greenland, we looked at open water days to provide a more nuanced picture of sea ice change at specific locations."

For the study, Barnhart, Kay and their colleagues relied on climate projections from 1850 to 2100 and analyzed multiple runs or "realizations" from a single climate model.

According to their analysis, the entire Arctic coastline and most of the Arctic Ocean will experience an additional 60 days of open water each year by the 2050s, and many sites will have more than 100 additional days.

"The Arctic is warming and the sea ice is melting, with impacts on Arctic people and ecosystems," Kay said. "By the end of this century, assuming a scenario of continued business-as-usual greenhouse gas emissions, the Arctic will be in a new regime with respect to open water, fully outside the realm of what we've seen in the past."

###

The study was authored by Katherine R. Barnhart (Department of Geological Sciences and Institute for Arctic and Alpine Research, CU-Boulder; Annenberg Public Policy Center, University of Pennsylvania); Christopher R. Miller (independent statistician); Irina Overeem (Institute for Arctic and Alpine Research, CU-Boulder); Jennifer Kay (Cooperative Institute for Research in Environmental Sciences and Department of Atmospheric and Oceanic Sciences, CU-Boulder).

CIRES is a partnership of NOAA and the University of Colorado Boulder.

Katy Barnhart | EurekAlert!

Further reports about: Alpine Research Arctic Arctic Ocean CIRES CU-Boulder INSTAAR coastal erosion conditions sea ice

More articles from Earth Sciences:

nachricht World’s oldest known oxygen oasis discovered
18.01.2018 | Eberhard Karls Universität Tübingen

nachricht A close-up look at an uncommon underwater eruption
11.01.2018 | Woods Hole Oceanographic Institution

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Polymers Based on Boron?

18.01.2018 | Life Sciences

Bioengineered soft microfibers improve T-cell production

18.01.2018 | Life Sciences

World’s oldest known oxygen oasis discovered

18.01.2018 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>