Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Less ice, more water in Arctic Ocean by 2050s

03.11.2015

By the 2050s, parts of the Arctic Ocean once covered by sea ice much of the year will see at least 60 days a year of open water, according to a new modeling study led by researchers at the University of Colorado Boulder.

"We hear all the time about how sea ice extent in the Arctic is going down," says Katy Barnhart, who led the study while at CU-Boulder's Institute for Arctic and Alpine Research (INSTAAR). "That's an important measurement if you are trying to understand broad impacts of climate change in the Arctic, but it doesn't tell us about how the changes in the sea ice in the Arctic are going to affect specific places."


The Arctic Ocean will experience more days of open water by the 2050s.

Photo by Katy Barnhart

So Barnhart and her colleagues, including CIRES Fellow Jennifer Kay and INSTAAR Fellow Irina Overeem, set out to investigate the very local impacts of open water expansion patterns in the Arctic. Their work is published today in the journal Nature Climate Change.

The researchers used climate simulations from the National Center for Atmospheric Research-based Community Earth System Model to see how the number of open water, or sea-ice-free, days change from 1850 to 2100 in our planet's northernmost ocean. They also wanted to understand when open water conditions in specific locations would be completely different from preindustrial conditions.

Because most economic activity in the Arctic is along the coastline, the team focused on four coastal locations that demonstrated the range of sea ice change: Drew Point, along Alaska's North Slope; the Laptev Sea, along Siberia's northern coast; Perry Channel in the Canadian Arctic Archipelago (part of the Northwest Passage route); and Arctic Ocean regions east of Svalbard, Norway.

For example, at Drew Point, open water is already shifting from preindustrial conditions. Once present about 50 days a year on average (~1900-2000), open water is now present about 100 days a year. By the 2070s, the modeling study concludes, there could be close to 200 days a year with no sea ice at Drew Point, which is likely to worsen coastal erosion.

"We wanted to highlight places that had interesting or different stories with respect to the patterns of Arctic Ocean, atmosphere, and sea ice motion--things like coastal erosion or connections to potential sea routes," said Barnhart, now a postdoctoral fellow at the Annenberg Public Policy Center of the University of Pennsylvania. "Since we don't expect the impacts of Arctic sea ice loss to be exactly the same in Alaska as in Greenland, we looked at open water days to provide a more nuanced picture of sea ice change at specific locations."

For the study, Barnhart, Kay and their colleagues relied on climate projections from 1850 to 2100 and analyzed multiple runs or "realizations" from a single climate model.

According to their analysis, the entire Arctic coastline and most of the Arctic Ocean will experience an additional 60 days of open water each year by the 2050s, and many sites will have more than 100 additional days.

"The Arctic is warming and the sea ice is melting, with impacts on Arctic people and ecosystems," Kay said. "By the end of this century, assuming a scenario of continued business-as-usual greenhouse gas emissions, the Arctic will be in a new regime with respect to open water, fully outside the realm of what we've seen in the past."

###

The study was authored by Katherine R. Barnhart (Department of Geological Sciences and Institute for Arctic and Alpine Research, CU-Boulder; Annenberg Public Policy Center, University of Pennsylvania); Christopher R. Miller (independent statistician); Irina Overeem (Institute for Arctic and Alpine Research, CU-Boulder); Jennifer Kay (Cooperative Institute for Research in Environmental Sciences and Department of Atmospheric and Oceanic Sciences, CU-Boulder).

CIRES is a partnership of NOAA and the University of Colorado Boulder.

Katy Barnhart | EurekAlert!

Further reports about: Alpine Research Arctic Arctic Ocean CIRES CU-Boulder INSTAAR coastal erosion conditions sea ice

More articles from Earth Sciences:

nachricht GPM sees deadly tornadic storms moving through US Southeast
01.12.2016 | NASA/Goddard Space Flight Center

nachricht Cyclic change within magma reservoirs significantly affects the explosivity of volcanic eruptions
30.11.2016 | Johannes Gutenberg-Universität Mainz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>