Interplay of tectonics and the deep biosphere
Considering geological time scales, the occurrence of biogenic shale gas in Sweden´s crust is relatively young. An international team of geoscientists (led by Hans-Martin Schulz, German Research Centre for Geosciences GFZ) found that biogenic methane in the Alum Shale in South Sweden formed due to deglaciation around 12.000 years ago.
Moreover, the formation processes were due to complex interactions between neotectonic activity and the occurrence of a deep biosphere. Applying a new hydrogeochemical modelling approach, the specific methane generation process was unravelled and quantified for the first time in Europe.
Around 300 million years ago the Variscan Mountain belt was formed in Central Europe. Its orogeny and uplift was coupled to extensional movements in today´s Northern Europe.
As a result, mafic magmas intruded the early Palaeozoic rock sequence and led to oil formation in the Alum Shale followed by its expulsion. Migrating bitumens impregnated the Alum Shale outside the area of thermal influence.
The melting of the up to three kilometers thick glaciers at the end of the last glaciation led to a beginning uplift of the formerly glaciated Baltic Sea region which still today rises by up to 10 mm per year. A consequence of this uplift tendency is the formation of fractures along which melting water migrated into the subsurface.
It is important to note that low contents of dissolved solids in formation water is a prerequisite for methanogenic microbes to convert soluble oil components into methane. Accordingly, methane is stored in black shale today and can be found up to approximately 100 meters depth.
Up to now, similar biogenic methane resources were exclusively known from North America which was glaciated as Northern Europe. The most prominent example is the Antrim Shale of Devonian age in Michigan.
Hans-Martin Schulz, Steffen Biermann, Wolfgang van Berk, Martin Krüger, Nontje Straaten, Achim Bechtel, Richard Wirth, Volker Lüders, Niels Hemmingsen Schovsbo, and Stephen Crabtree: „From shale oil to biogenic shale gas: Retracing organic–inorganic interactions in the Alum Shale (Furongian–Lower Ordovician) in southern Sweden.”, AAPG Bulletin, v. 99, no. 5 (May 2015), pp. 927–956, DOI: 10.1306/10221414014
Franz Ossing | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ
Further information:
http://www.gfz-potsdam.de/
Further reports about: > Baltic Sea > GFZ > Helmholtz-Zentrum > Shale Gas > Tectonics > biogenic > biosphere > deep biosphere > geological time > geological time scales > interactions > methanogenic microbes
Clear as mud: Desiccation cracks help reveal the shape of water on Mars
20.04.2018 | Geological Society of America
Hurricane Harvey: Dutch-Texan research shows most fatalities occurred outside flood zones
19.04.2018 | European Geosciences Union
University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.
Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.
Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.
Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...
Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.
The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...
Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.
Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...
In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...
Anzeige
Anzeige
Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"
13.04.2018 | Event News
Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018
12.04.2018 | Event News
IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur
09.04.2018 | Event News
Magnetic nano-imaging on a table top
20.04.2018 | Physics and Astronomy
Start of work for the world's largest electric truck
20.04.2018 | Interdisciplinary Research
Atoms may hum a tune from grand cosmic symphony
20.04.2018 | Physics and Astronomy