Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Is old rock really as "solid as a rock"

08.09.2015

Deformed craton under North America

In the course of billions of years continents break up, drift apart, and are pushed back together again. The cores of continents are, however, geologically extremely stable and have survived up to 3.8 billions of years. These cores that are called cratons are the oldest known geological features of our planet.

It was assumed that the cratons are stable because of their especially solid structure due to relatively low temperatures compared to the surrounding mantle. A team of German-American scientists now discovered that these cratons that were assumed to be “as solid as a rock” are not that solid after all.

The team headed by Dr. Mikhail Kaban from the GFZ German Research Centre for Geosciences now discovered that the craton below the North American continent is extremely deformed: its root is shifted relative to the center of the craton by 850 kilometers towards the west-southwest.

This fact is in contrast to the prevailing assumptions that these continental roots did not undergo substantial changes after their formation 2.5 to 3.8 billion years ago. The study that appears in the latest online publication of "Nature Geoscience" contradicts this traditional view.

“We combined and analyzed several data sets from the Earth’s gravity field, topography, seismology, and crustal structure and constructed a three dimensional density model of the composition of the lithosphere below North America”, explains GFZ scientist Mikhail Kaban. “It became apparent that the lower part of the cratonic root was shifted by about 850 kilometers.”

What caused the deformation of the stable and solid craton? A model of the flows in the Earth’s mantle below North America, developed by the scientists, reveals that the mantle material below 200 kilometers flows westward at a velocity of about 4 millimeters per year.

This is in concordance with the movement of the tectonic plate. Due to the basal drag of this flow the lower part of the cratonic lithosphere is shifted.

“This indicates that the craton is not as solid and as insensitive to the mantle flow as was previously assumed”, Kaban completes. There is far more mechanical, chemical, and thermal interaction between the craton of billions of years in age and its surrounding in the upper mantle of the Earth than previously thought.

Mikhail K. Kaban,Walter D. Mooney and Alexey G. Petrunin, 2015: “Cratonic root beneath North America shifted by basal drag from the convecting mantle”, Nature Geoscience, Advance Online Publication, DOI: 10.1038/NGEO2525

Franz Ossing
Helmholtz Centre Potsdam
GFZ German Research Centre for Geosciences
Deutsches GeoForschungsZentrum
- Head, Public Relations -
Telegrafenberg
14473 Potsdam / Germany
E-Mail: ossing@gfz-potsdam.de
Tel. +49 (0)331-288 1040
Fax +49 (0)331-288 1044
www.gfz-potsdam.de

Franz Ossing | Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences
Further information:
http://www.gfz-potsdam.de/en/media-communication/press-releases/details/article/sind-steinalte-gesteine-wirklich-steinhart/

More articles from Earth Sciences:

nachricht Arctic melt ponds form when meltwater clogs ice pores
24.01.2017 | University of Utah

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>