Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Is Climate Change Responsible for More Salt in the North Atlantic?

23.10.2015

Heidelberg researchers studied the dynamics of the Mediterranean outflow through the Straits of Gibraltar – impact on global ocean circulation

As a result of global warming, more extremely salty water masses from the Mediterranean will be flowing into the North Atlantic through the Straits of Gibraltar. This was the conclusion of researchers from Heidelberg University working with an international research team to investigate the dynamics of Mediterranean outflow.


Foto: André Bahr

The Research vessel "Joides Resolution", that was used to analyse the core samples, at Lisbon harbour.

According to Dr. André Bahr from the Institute of Earth Sciences, this process could counterbalance the predicted drop in the North Atlantic’s salt content. Experts believe that the desalination brought on by massive melt waters from the Arctic and Greenland will significantly affect global ocean circulation and possibly weaken the Gulf Stream. The findings were published in the journal “Geology”.

To better understand the dynamics of the Mediterranean outflow, the researchers analysed its behaviour under different climatic conditions in the geologic past. They studied core samples from the continental shelf off of southern Spain and Portugal obtained through the International Ocean Discovery Program. “The data show that the Mediterranean current was subject to massive and in some cases extremely abrupt fluctuations over the last 150,000 years,” says Dr. Bahr.

The Heidelberg researcher explains that the strength of the current depends mainly on the intensity of the African monsoon, as is evident from the origin of the water that flows into the Atlantic. It derives for the most part from the eastern Mediterranean, where hot and dry conditions raise the salt content in the surface water.

In winter these water masses cool, become denser and flow west at greater depths, where they leave the Mediterranean through the Straits of Gibraltar. If strong monsoons in Northeast Africa increase the inflow of fresh water, the formation of this dense, salty water is inhibited and the outflow of Mediterranean water into the Atlantic weakened along with it.

Conversely, the very dry conditions in the eastern Mediterranean that current climate models strongly predict will boost the salt content in the surface waters and thus strengthen the current from the Mediterranean.

“A comparison of the data we derived on the strength of the ocean circulation in the recent geologic past indicates that a strong Mediterranean outflow and the increased inflow of salt into the Atlantic at the end of the last warm cycle 120,000 years ago actually had a stabilising effect.

This is because the circulation is significantly driven by the contrasts in salt content in the different water masses,” explains André Bahr. For this reason, the geoscientist believes that tropical and subtropical climate changes and their impact on oceanography should figure more prominently in climate prognoses. Researchers from Germany, the Netherlands, Japan, Spain, Portugal and Great Britain contributed to the study.

Original publication:
A. Bahr, S. Kaboth, F. Jiménez-Espejo, F. Sierro, A. Voelker, L. Lourens, U. Röhl, G. Reichart, C. Escutia, F. Hernández-Molina: Persistent monsoonal forcing of Mediterranean Outflow Water dynamics during the late Pleistocene. Geology (published online on 24 September 2015), doi: 10.1130/G37013.1

Contact:
Dr. André Bahr
Institute of Earth Sciences
Phone +49 6221 54-6062
andre.bahr@geow.uni-heidelberg.de

Communications and Marketing
Press Office
Phone +49 6221 54-2311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-heidelberg.de

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>