Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In times of climate change: What a lake’s colour can tell about its condition

21.09.2017

With the help of satellite observations from 188 lakes worldwide, scientists at the Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB) have shown that the warming of large lakes amplifies their colour. Lakes which are green due to their high phytoplankton content tend to become greener in warm years as phytoplankton content increases. Clear, blue lakes with little phytoplankton, on the other hand, tend to become even bluer in warm years caused by declines in phytoplankton. Thus, contrary to previous assumptions, the warming of lakes tends to amplify their richness or poverty of phytoplankton.

Lake specialist Dr. Benjamin Kraemer and his team used freely accessible NASA satellite images to test for associations between temperature and phytoplankton content in 188 of the world's largest lakes from 2002 to 2016.


Satellite image showing a global Chlorophyll_a map that the team used for its analyses. Blue and green indicate a low phytoplankton biomass whereas red stands for a high phytoplankton biomass.

Map freely available for reuse from NASA's OceanColor Web: https://oceancolor.gsfc.nasa.gov/cgi/l3/A20021852017090.L3m_CU_CHL_chlor_a_4km.nc.png?sub=img

Based on experiments performed by others, the scientists expected that warming would decrease phytoplankton biomass in the world’s lakes. In contrast to their assumption, however, warm years were rather associated with higher phytoplankton biomass in most (68 per cent) of the lakes in their analysis. Kraemer explains that, “warming could increase phytoplankton content by expanding the growing season or by reducing the abundance of animals which feed on phytoplankton.”

Less isn’t always more…

In lakes that are phytoplankton-poor, warming was associated with reductions in phytoplankton content. In phytoplankton-poor lakes, by strengthening a lake’s thermal stratification, surface warming can trap nutrients below the surface layer of lakes: “This makes the nutrients unavailable to phytoplankton which reduces phytoplankton content and makes lakes clearer in warm years,” Kraemer explains. What may sound like a change for the better at first, might present its own challenges to lake managers such as the detrimental potential to reduce fisheries productivity.

…and the rich get even richer

Communities with lakes that are phytoplankton-rich – getting even richer in warm years – can take action to reduce nutrient inputs to maintain the (existing) water quality of lakes as they warm. Thus, the amplification of lake colours can serve as an indicator to tackle adaptive management efforts to prevent the deterioration of lakes as they warm.

Moving forward, the researchers plan to extend their analysis to include longer time series from more and smaller lakes. After all, most lakes in the world are small, so understanding how smaller lakes respond to warming will also be important to guide lake management: smaller lakes tend to be more productive and might thus be even more affected by climate change than large lakes.

Study:

Benjamin M. Kraemer, Thomas Mehner, Rita Adrian (2017): Reconciling the opposing effects of warming on phytoplankton biomass in 188 large lakes, Scientific Reports 7, Article number: 10762 (2017), doi:10.1038/s41598-017-11167-3.

Read the study > https://www.nature.com/articles/s41598-017-11167-3

Contact persons:

Dr. Benjamin Kraemer, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Dept. Ecosystem Research, bkraemer@igb-berlin.de

Katharina Bunk, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Public Relations, bunk@igb-berlin-de, T +49 (0)30 641 81 631, M +49 (0)170 45 49 034

About the Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB):

Work at IGB combines basic research with preventive research as a basis for the sustainable management of freshwaters. In the process, IGB explores the structure and function of aquatic ecosystems under near-natural conditions and under the effect of multiple stressors. Its key research activities include the long-term development of lakes, rivers and wetlands under rapidly changing global, regional and local environmental conditions, the development of coupled ecological and socio-economic models, the renaturation of ecosystems, and the biodiversity of aquatic habitats. Work is conducted in close cooperation with universities and research institutions from the Berlin/Brandenburg region as well as worldwide. IGB is a member of the Forschungsverbund Berlin e.V., an association of eight research institutes of natural sciences, life sciences and environmental sciences in Berlin. The institutes are members of the Leibniz Association. http://www.igb-berlin.de/en

Weitere Informationen:

https://oceancolor.gsfc.nasa.gov/cgi/l3/A20021852017090.L3m_CU_CHL_chlor_a_4km.n... Satellite image showing a global Chlorophyll_a map that the team used for its analyses. Blue and green indicate a low phytoplankton biomass whereas red stands for a high phytoplankton biomass. Map freely available for reuse from NASA's OceanColor Web.

Katharina Bunk | idw - Informationsdienst Wissenschaft

More articles from Earth Sciences:

nachricht WSU researchers document one of planet's largest volcanic eruptions
12.10.2017 | Washington State University

nachricht Formation of coal almost turned our planet into a snowball
10.10.2017 | Potsdam-Institut für Klimafolgenforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

Im Focus: Small collisions make big impact on Mercury's thin atmosphere

Mercury, our smallest planetary neighbor, has very little to call an atmosphere, but it does have a strange weather pattern: morning micro-meteor showers.

Recent modeling along with previously published results from NASA's MESSENGER spacecraft -- short for Mercury Surface, Space Environment, Geochemistry and...

Im Focus: Austrian and Chinese Academies of Sciences successfully conducted first Inter-Continental Quantum Video Call

The two Academy presidents Chunli Bai and Anton Zeilinger tested quantum encrypted communication between Beijing and Vienna in a live-experiment. The quantum key was transmitted via the Chinese quantum satellite Micius.

From quantum cryptography to the quantum internet – fundamental research into the world of the quantum promises several new tech opportunities in the future....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

Conference Week RRR2017 on Renewable Resources from Wet and Rewetted Peatlands

28.09.2017 | Event News

 
Latest News

The LBT gets polarized: First light for the PEPSI polarimeters

13.10.2017 | Physics and Astronomy

IVAM Product Market presents future intelligent medical technologies at COMPAMED 2017

13.10.2017 | Trade Fair News

Cold molecules on collision course

13.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>