Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Improved monitoring of coral reefs with the HyperDiver

24.08.2017

Bremen scientists are founding a new company with the help from the EXIST program

Climate change poses a real threat to coral reefs. How this threat actually affects the reefs can be assessed only with considerable staff and technical effort. A team of marine researchers from the Max Planck Institute for Marine Microbiology in Bremen will found a new company with HyperSurvey going completely new ways. Support comes from the EXIST scholarship, an initiative of the Federal Ministry of Economics and Technology (BMWi).


The hyperdiver

Benjamin Mueller, Carmabi


The HyperDiver was used in the southern Caribbean, the Marianas in the Pacific, and Papua New Guinea. With the HyperDiver system, a diver can capture up to 40 square meters of reef every

Max Planck Institute for Marine Microbiology, Bremen

How does the HyperDiver system work?

Like the well-established satellite systems for environmental monitoring, the new HyperDiver system is based on an optical sensor that monitors a variety of wavelengths simultaneously. The aim is to measure environmental parameters on a large scale. This will be accomplished with the new HyperDiver system. This compact system can be operated by a single diver who maps large areas within a short time.

For several decades it was possible to monitor the state of rainforests with satellite systems. The principle is based on the optical properties of plant dyes, as dead trees show a different light spectrum than living ones. The researchers have applied this principle to the coral reef. Their new approach was based on the assumption that the conditions of the corals are reflected by their color spectra. An additional image recognition software should then also automatically assign and determine the coral species by software using the external form.

Computer programs learn to evaluate coral

The first HyperDiver system was developed by Dr. Arjun Chennu with the help of Paul Färber from the Max Planck Institute in Bremen, and was a complete success. The small platform is balanced with different cameras and buoys so that it floats in the water and is therefore easy to move. In order to map a coral reef, the diver has to meander his way along the area to be investigated.

"You can cover about 40 m2 of reef every minute. Our device is currently optimized for the use of coral reefs, but we are planning further areas of application such as lakes and the shallow coasts of the oceans", says Dr. Arjun Chennu.

But the HyperDiver system initially delivers only raw data. The marine biologist Dr. Joost den Haan from the HyperDiver team explains the analysis procedure:

"The basic principle is a self-learning algorithm that has been taught by us. We as biologists know the different life forms such as hard and soft corals, sponges, algae, starfish, sea cucumbers, anemones etc. We have transferred our knowledge to the computer system. The clear advantage of this automated approach is that you only need one person to dive and use the device for the actual data collection. Anyone who can dive can make monitoring with the device without great effort. And we also want to mount the unit on research vessels and remote-controlled dive robots. Our great advantage is that data input is automatic. The analysis happens later on land and the system automatically generates maps and reports. "

The new company HyperSurvey, which consists of Dr. Joost den Haan (marine biologist and managing director), Raja Kandukuri (hardware specialist), and Guy Rigot (software developer), has a dedicated website www.hypersurvey.com, which provides the essential information for future business partners.

"The new HyperDiver system is considerably more cost-effective and faster than conventional monitoring methods, where individual marine biologists assess the reefs along a tape measure. We offer universities, research institutes and authorities as well as the private sector and environmental organizations an effective tool for their work, "says Dr. Joost den Haan.

Support and initial funding

The mentors are Dr. Dirk de Beer and Dr. Arjun Chennu of the Max Planck Institute for Marine Microbiology (MPIMM). The HyperDiver concept was also immediately approved by the the EXIST program, an initiative of the Federal Ministry of Economics and Technology (BMWi), which now provides a scholarship. The MPIMM will provide further active and organizational support.

The Max Planck Institute for Marine Microbiology, for which Dr. Arjun Chennu and the electrical engineer Paul Färber developed the first HyperDiver, offers the researchers labs and office space for the next 10 months. Further help comes from the Bremen University Initiative for the Promotion of Entrepreneurship, Entrepreneurship and Entrepreneurship BRIDGE.

More information

Dr. Joost den Haan
Phone: +49 (0)421 2028 – 832, jhaan(at)mpi-bremen.de
or
j.denhaan(at)hypersurvey.com
Max-Planck-Institut für Marine Mikrobiologie

www.mpi-bremen.de

Dr. Arjun Chennu
Phone: +49 (0)421 2028 – 832, achennu(at)mpi-bremen.de

Or contact the press team
Dr. Manfred Schlösser
Phone: +49 (0)421 2028 – 704, mschloes(at)mpi-bremen.de

Dr. Fanni Aspetsberger
Phone: +49 (0)421 2028 – 947, faspetsb(at)mpi-bremen.

Dr. Manfred Schloesser | Max-Planck-Institut für marine Mikrobiologie

More articles from Earth Sciences:

nachricht Root exudates affect soil stability, water repellency
18.04.2018 | American Society of Agronomy

nachricht Newly discovered salty subglacial lakes could help search for life in solar system
12.04.2018 | University of Texas at Austin

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

Im Focus: Stronger evidence for a weaker Atlantic overturning

The Atlantic overturning – one of Earth’s most important heat transport systems, pumping warm water northwards and cold water southwards – is weaker today than any time before in more than 1000 years. Sea surface temperature data analysis provides new evidence that this major ocean circulation has slowed down by roughly 15 percent since the middle of the 20th century, according to a study published in the highly renowned journal Nature by an international team of scientists. Human-made climate change is a prime suspect for these worrying observations.

“We detected a specific pattern of ocean cooling south of Greenland and unusual warming off the US coast – which is highly characteristic for a slowdown of the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

New capabilities at NSLS-II set to advance materials science

18.04.2018 | Materials Sciences

Strong carbon fiber artificial muscles can lift 12,600 times their own weight

18.04.2018 | Materials Sciences

Polymer-graphene nanocarpets to electrify smart fabrics

18.04.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>