Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Iceland Rises as Its Glaciers Melt From Climate Change

30.01.2015

The Earth’s crust under Iceland is rebounding as global warming melts the island’s great ice caps, according to a new study accepted for publication in Geophysical Research Letters, a journal of the American Geophysical Union.

The paper is the first to show the current fast uplift of the Icelandic crust is a result of accelerated melting of the island’s glaciers and coincides with the onset of warming that began about 30 years ago, according the study’s authors.


This global positioning satellite receiver is part of Iceland’s network of 62 such receivers that geoscientists are using to detect movements of the Icelandic crust that are as small as one millimeter per year. Langjökull glacier is in the background.

Credit: Richard A. Bennett/ University of Arizona Department of Geosciences.

Usage restrictions: This photo of a GPS receiver in Iceland by Richard A. Bennett may only be used to illustrate a story about the research described in the accompanying news release, “Iceland rises as its glaciers melt from climate change.” Please make sure to credit the photo as requested. Do not post this image independent of the story.

Some sites in south-central Iceland are moving upward as much as 35 millimeters (1.4 inches) per year – a speed that surprised the researchers.

“Our research makes the connection between recent accelerated uplift and the accelerated melting of the Icelandic ice caps,” said Kathleen Compton, a geosciences doctoral candidate at the University of Arizona in Tucson, and lead author of the new paper.

This global positioning satellite receiver is part of Iceland’s network of 62 such receivers that geoscientists are using to detect movements of the Icelandic crust that are as small as one millimeter per year. Langjökull glacier is in the background. Credit: Richard A. Bennett/ University of Arizona Department of Geosciences.

Geologists have long known that as glaciers melt and become lighter, the Earth rebounds as the weight of the ice decreases.

Whether the current rebound geologists detect is related to past deglaciation or modern ice loss has been an open question until now, said co-author Richard Bennett, a University of Arizona associate professor of geosciences.

“Iceland is the first place we can say accelerated uplift means accelerated ice mass loss,” Bennett said.

To figure out how fast the crust was moving upward, the team used a network of 62 global positioning satellite receivers fastened to rocks throughout Iceland. By tracking the position of the GPS receivers year after year, the scientists “watch” the rocks move and can calculate how far they have traveled – a technique called geodesy.

The new work shows that, at least for Iceland, the land’s current accelerating uplift is directly related to the thinning of glaciers and to global warming.

“What we’re observing is a climatically induced change in the Earth’s surface,” Bennett said.

He added there is geological evidence that during the past deglaciation roughly 12,000 years ago, volcanic activity in some regions of Iceland increased thirtyfold.

Others have estimated the Icelandic crust’s rebound from warming-induced ice loss could increase the frequency of volcanic eruptions such as the 2010 eruption of Eyjafjallajökull, which had negative economic consequences worldwide.

Some of Iceland’s GPS receivers have been in place since 1995. Bennett, Sigrun Hreinsdóttir of GNS Science in Avalon, New Zealand, and colleagues had installed 20 GPS receivers in Iceland in 2006 and 2009, thus boosting the coverage of the nation’s geodesy network. In central and southern Iceland, where five of the largest ice caps are located, the receivers are 30 kilometers (18 miles) or less apart on average.

The team primarily used the geodesy network to track geological activity such as earthquakes and volcanic eruptions.

In 2013, Bennett noticed one of the long-running stations in the center of the country was showing that site was rebounding at an accelerated rate. He wondered about it, so he and his colleagues checked the nearby stations to see if they had recorded the same changes.

“The striking answer was, yes, they all do,” he said. “We wondered what in the world could be causing this?”

The team began systematically analyzing years of signals from the entire network and found the fastest uplift was the region between several large ice caps. The rate of uplift slowed the farther the receiver was from the ice cap region.

Other researchers had been measuring ice loss and observed a notable uptick in the rate of melting since 1995. Temperature records for Iceland, some of which go back to the 1800s, show temperatures increasing since 1980.

To determine whether the same rate of ice loss year after year could cause such an acceleration in uplift, Compton tested that idea using mathematical models. The answer was no: The glaciers had to be melting faster and faster every year to be causing more and more uplift.

Compton found the onset of rising temperatures and the loss of ice corresponded tightly with her estimates of when uplift began.

“I was surprised how well everything lined up,” she said.

Bennett said, “There’s no way to explain that accelerated uplift unless the glacier is disappearing at an accelerated rate.”

Estimating ice loss is laborious and difficult, he said. “Our hope is we can use current GPS measurements of uplift to more easily quantify ice loss.”

The team’s next step is to analyze the uplift data to reveal the seasonal variation as the ice caps grow during the winter snow season and melt during the summer.

The National Science Foundation and the Icelandic Center for Research funded the research.

###

The American Geophysical Union is dedicated to advancing the Earth and space sciences for the benefit of humanity through its scholarly publications, conferences, and outreach programs. AGU is a not-for-profit, professional, scientific organization representing more than 62,000 members in 144 countries. Join our conversation on Facebook, Twitter, YouTube, and other social media channels.

Notes for Journalists

Journalists and public information officers (PIOs) of educational and scientific institutions who have registered with AGU can download a PDF copy of this article by clicking on this link:
http://onlinelibrary.wiley.com/doi/10.1002/2014GL062446/abstract?campaign=wlytk-41855.5282060185

Or, you may order a copy of the final paper by emailing your request to Nanci Bompey at nbompey@agu.org. Please provide your name, the name of your publication, and your phone number.

Neither the paper nor this press release is under embargo.
Title
“Climate driven vertical acceleration of Icelandic crust measured by CGPS geodesy”

Authors:
Kathleen Compton: Department of Geosciences, University of Arizona, Tucson, Arizona USA;

Richard A. Bennett: Department of Geosciences, University of Arizona, Tucson, Arizona USA;

Sigrun Hreinsdóttir: University of Iceland, now at GNS Science in Avalon, New Zealand.

Contact information for the authors:
Kathleen Compton: kcompton@email.arizona.edu

Richard Bennett: +1 (520) 621-2324, rb0@email.arizona.edu


AGU Contact:
Nanci Bompey
+1 (202) 777-7524
nbompey@agu.org

University of Arizona Contact:
Mari N. Jensen
+1 (520) 626-9635
mnjensen@email.arizona.edu

Peter Weiss | American Geophysical Union
Further information:
http://news.agu.org/press-release/iceland-rises-as-its-glaciers-melt-from-climate-change/

More articles from Earth Sciences:

nachricht GPM sees deadly tornadic storms moving through US Southeast
01.12.2016 | NASA/Goddard Space Flight Center

nachricht Cyclic change within magma reservoirs significantly affects the explosivity of volcanic eruptions
30.11.2016 | Johannes Gutenberg-Universität Mainz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>