Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Icebergs: Mathematical model calculates the collapse of shelf ice

24.08.2017

Shelf ice, as found in Antarctica, refers to giant floating ice sheets that can span thousands of square kilometres. Pieces break off at their edges which form icebergs in the ocean. In order to more effectively predict these break-offs, in a process known as calving, Julia Christmann from the University of Kaiserslautern (TU) has developed mathematical models in cooperation with the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI). On the basis of physical factors, it is claimed that these models can be used to predict when and where the ice may collapse. This is important particularly for research teams situated on the ice shelf.

The ice rises up like a sheer cliff face – shelf ice is not only several thousand square kilometres large, it is also more than a hundred metres high in many places. From time to time, pieces break off the edge and crash into the sea below, where they float away in the ocean as icebergs. This was also recently the case with the Larsen C ice shelf.


Julia Christmann in front of the icebreakter "Polarstern" in the Antarctica

Credit: Julia Christmann


Julia Christmann

Credit: Thomas Koziel

Science is unable to accurately predict when and where the ice shelf will break. “Assumptions were always previously based on observations by glaciologists and other researchers. Concrete calculations with physical parameters did not exist,” says Julia Christmann, who is researching technical mechanics at the University of Kaiserslautern with Professor Dr Ralf Müller. As a rule of thumb, she explains, the ice tends to break where it is thinner than 200 metres; in reality, however, there are also many ice shelves that are even thinner.

The calving of ice sheets is a continuous process that is influenced by a number of different factors. Satellite data was also used in order to observe this natural spectacle. “However, they only offer snapshots of the process,” Christmann adds. As part of her doctorate research, she has developed mathematical models to calculate when and where the ice shelf may collapse. A range of different physical factors are germane here.

“The thickness and density of ice can play an important role, for example,” Christmann continues. “The material parameters are also critical, including elastic factors. These mainly influence where the iceberg is calved. There is also the viscosity, which affects the time between break-off events.”

The doctoral student at Kaiserslautern was also supported in her work by Professor Dr Angelika Humbert from the AWI. Humbert is an expert in the field of glaciology. She is also occupied with the properties and motion of giant ice sheets on the Antarctic continent, which constitute 70 percent of the entire supply of freshwater on the planet.

“The ice shelf generally breaks at points that are between a half and full thickness of the ice sheet from the edge,” summarises Christmann. This data may be particularly important for the scientific community, since numerous research stations are located on ice shelves in Antarctica. This includes the German Neumayer Station III or the British station, Halley VI, which was closed for winter this year due to a crack in the ice.

Christmann recently completed her doctoral thesis. She is continuing her research on the properties of ice. She is now focusing on grounding lines in Greenland. This refers to the area in which the ice still touches the ground and merges into floating shelf ice. The researcher intends to find out how these lines change over the course of time.

For enquiries:
Dr Julia Christmann
Technical Mechanics
TU Kaiserslautern
Tel.: 0631 205-2126
Email: jchristm[at]rhrk.uni-kl.de

Melanie Löw | Technische Universität Kaiserslautern
Further information:
http://www.uni-kl.de

More articles from Earth Sciences:

nachricht Stagnation in the South Pacific Explains Natural CO2 Fluctuations
23.02.2018 | Carl von Ossietzky-Universität Oldenburg

nachricht First evidence of surprising ocean warming around Galápagos corals
22.02.2018 | University of Arizona

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>